R-loops Dotaz Zobrazit nápovědu
Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSβ, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSβ recognizes and destabilizes G4 structures in vitro. These data suggest that MutSβ destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.
- MeSH
- DNA metabolismus MeSH
- homeostáza telomer MeSH
- lidé MeSH
- nádory * genetika MeSH
- R-smyčka MeSH
- RNA dlouhá nekódující * metabolismus MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSβ, an MLH1-PMS1 heterodimer termed MutLβ, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells. This DNA repair process depends on the G4-binding activity of MutSβ, the helicase activity of FANCJ, and the binding of FANCJ to MLH1. Furthermore, we show that MutSβ, MutLβ, and MLH1-FANCJ interaction mediate FANCJ recruitment to G4s. These data suggest that MutSβ, MutLβ, and FANCJ act in conjunction to eliminate G4/R-loops at TRC sites, allowing replication restart.
- MeSH
- DNA-helikasy genetika metabolismus MeSH
- DNA genetika MeSH
- lidé MeSH
- proteiny FANC * genetika metabolismus MeSH
- R-smyčka * MeSH
- replikace DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.
- MeSH
- DNA opravný a rekombinační protein Rad52 metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA-ligasy metabolismus MeSH
- DNA-polymerasa III metabolismus MeSH
- endodeoxyribonukleasy metabolismus MeSH
- endonukleasy genetika metabolismus MeSH
- genetická transkripce genetika MeSH
- HeLa buňky MeSH
- helikasy RecQ metabolismus fyziologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- R-smyčka genetika fyziologie MeSH
- rekombinasa Rad51 genetika metabolismus fyziologie MeSH
- replikace DNA genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Replication forks stalled at co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage-religation cycles mediated by MUS81 endonuclease and DNA ligase IV (LIG4), which presumably relieve the topological barrier generated by the transcription-replication conflict (TRC) and facilitate ELL-dependent reactivation of transcription. Here, we report that the restart of R-loop-stalled replication forks via the MUS81-LIG4-ELL pathway requires senataxin (SETX), a helicase that can unwind RNA:DNA hybrids. We found that SETX promotes replication fork progression by preventing R-loop accumulation during S-phase. Interestingly, loss of SETX helicase activity leads to nascent DNA degradation upon induction of R-loop-mediated fork stalling by hydroxyurea. This fork degradation phenotype is independent of replication fork reversal and results from DNA2-mediated resection of MUS81-cleaved replication forks that accumulate due to defective replication restart. Finally, we demonstrate that SETX acts in a common pathway with the DEAD-box helicase DDX17 to suppress R-loop-mediated replication stress in human cells. A possible cooperation between these RNA/DNA helicases in R-loop unwinding at TRC sites is discussed.
- MeSH
- "flap" endonukleasy metabolismus genetika MeSH
- DEAD-box RNA-helikasy * metabolismus genetika MeSH
- DNA vazebné proteiny * metabolismus genetika MeSH
- DNA-helikasy * metabolismus genetika MeSH
- DNA-ligasa ATP metabolismus genetika MeSH
- DNA metabolismus genetika MeSH
- endonukleasy * metabolismus genetika MeSH
- genetická transkripce MeSH
- lidé MeSH
- multifunkční enzymy * metabolismus genetika MeSH
- R-smyčka * MeSH
- replikace DNA * MeSH
- RNA-helikasy * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
R-loops are common non-B nucleic acid structures formed by a three-stranded nucleic acid composed of an RNA-DNA hybrid and a displaced single-stranded DNA (ssDNA) loop. Because the aberrant R-loop formation leads to increased mutagenesis, hyper-recombination, rearrangements, and transcription-replication collisions, it is regarded as important in human diseases. Therefore, its prevalence and distribution in genomes are studied intensively. However, in silico tools for R-loop prediction are limited, and therefore, we have developed the R-loop tracker tool, which was implemented as a part of the DNA Analyser web server. This new tool is focused upon (1) prediction of R-loops in genomic DNA without length and sequence limitations; (2) integration of R-loop tracker results with other tools for nucleic acids analyses, including Genome Browser; (3) internal cross-evaluation of in silico results with experimental data, where available; (4) easy export and correlation analyses with other genome features and markers; and (5) enhanced visualization outputs. Our new R-loop tracker tool is freely accessible on the web pages of DNA Analyser tools, and its implementation on the web-based server allows effective analyses not only for DNA segments but also for full chromosomes and genomes.
- MeSH
- algoritmy * MeSH
- DNA chemie genetika MeSH
- genomika metody MeSH
- internet statistika a číselné údaje MeSH
- lidé MeSH
- nestabilita genomu * MeSH
- R-smyčka * MeSH
- software MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex. However, how R-loops are eliminated to allow the sequential restart of transcription and replication in this pathway remains elusive. Here, we identified the human DDX17 helicase as a factor that associates with R-loops and counteracts R-loop-mediated replication stress to preserve genome stability. We show that DDX17 unwinds R-loops in vitro and promotes MUS81-dependent restart of R-loop-stalled forks in human cells in a manner dependent on its helicase activity. Loss of DDX17 helicase induces accumulation of R-loops and the formation of R-loop-dependent anaphase bridges and micronuclei. These findings establish DDX17 as a component of the MUS81-LIG4-ELL pathway for resolution of R-loop-mediated transcription-replication conflicts, which may be involved in R-loop unwinding.
R-loops are three-stranded structures generated by annealing of nascent transcripts to the template DNA strand, leaving the non-template DNA strand exposed as a single-stranded loop. Although R-loops play important roles in physiological processes such as regulation of gene expression, mitochondrial DNA replication, or immunoglobulin class switch recombination, dysregulation of the R-loop metabolism poses a threat to the stability of the genome. A previous study in yeast has shown that the homologous recombination machinery contributes to the formation of R-loops and associated chromosome instability. On the contrary, here, we demonstrate that depletion of the key homologous recombination factor, RAD51, as well as RAD51 inhibition by the B02 inhibitor did not prevent R-loop formation induced by the inhibition of spliceosome assembly in human cells. However, we noticed that treatment of cells with B02 resulted in RAD51-dependent accumulation of R-loops in an early G1 phase of the cell cycle accompanied by a decrease in the levels of chromatin-bound ORC2 protein, a component of the pre-replication complex, and an increase in DNA synthesis. Our results suggest that B02-induced R-loops might cause a premature origin firing.
- MeSH
- chromozomální nestabilita účinky léků MeSH
- DNA biosyntéza MeSH
- G1 fáze účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- komplex rozpoznávající replikační počátek metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- R-smyčka * MeSH
- rekombinasa Rad51 * antagonisté a inhibitory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Prolonged pausing of the transcription machinery may lead to the formation of three-stranded nucleic acid structures, called R-loops, typically resulting from the annealing of the nascent RNA with the template DNA. Unscheduled persistence of R-loops and RNA polymerases may interfere with transcription itself and other essential processes such as DNA replication and repair. Senataxin (SETX) is a putative helicase, mutated in two neurodegenerative disorders, which has been implicated in the control of R-loop accumulation and in transcription termination. However, understanding the precise role of SETX in these processes has been precluded by the absence of a direct characterisation of SETX biochemical activities. Here, we purify and characterise the helicase domain of SETX in parallel with its yeast orthologue, Sen1. Importantly, we show that SETX is a bona fide helicase with the ability to resolve R-loops. Furthermore, SETX has retained the transcription termination activity of Sen1 but functions in a species-specific manner. Finally, subsequent characterisation of two SETX variants harbouring disease-associated mutations shed light into the effect of such mutations on SETX folding and biochemical properties. Altogether, these results broaden our understanding of SETX function in gene expression and the maintenance of genome integrity and provide clues to elucidate the molecular basis of SETX-associated neurodegenerative diseases.
- MeSH
- DNA-helikasy * genetika metabolismus MeSH
- genetická transkripce MeSH
- lidé MeSH
- multifunkční enzymy genetika metabolismus MeSH
- neurodegenerativní nemoci MeSH
- R-smyčka MeSH
- regulace genové exprese MeSH
- RNA-helikasy * metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- terminace genetické transkripce * MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DNA double-strand breaks (DSBs) represent a lethal form of DNA damage that can trigger cell death or initiate oncogenesis. The activity of RNA polymerase II (RNAPII) at the break site is required for efficient DSB repair. However, the regulatory mechanisms governing the transcription cycle at DSBs are not well understood. Here, we show that Integrator complex subunit 6 (INTS6) associates with the heterotrimeric sensor of ssDNA (SOSS1) complex (comprising INTS3, INIP and hSSB1) to form the tetrameric SOSS1 complex. INTS6 binds to DNA:RNA hybrids and promotes Protein Phosphatase 2A (PP2A) recruitment to DSBs, facilitating the dephosphorylation of RNAPII. Furthermore, INTS6 prevents the accumulation of damage-associated RNA transcripts (DARTs) and the stabilization of DNA:RNA hybrids at DSB sites. INTS6 interacts with and promotes the recruitment of senataxin (SETX) to DSBs, facilitating the resolution of DNA:RNA hybrids/R-loops. Our results underscore the significance of the tetrameric SOSS1 complex in the autoregulation of DNA:RNA hybrids and efficient DNA repair.
- MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA-helikasy metabolismus genetika MeSH
- DNA * metabolismus chemie MeSH
- dvouřetězcové zlomy DNA * MeSH
- fosforylace MeSH
- homeostáza genetika MeSH
- lidé MeSH
- oprava DNA * MeSH
- proteinfosfatasa 2 metabolismus genetika MeSH
- R-smyčka MeSH
- RNA-helikasy metabolismus genetika MeSH
- RNA-polymerasa II * metabolismus MeSH
- RNA * metabolismus genetika chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Exposure of gastric epithelial cells to the bacterial carcinogen Helicobacter pylori causes DNA double strand breaks. Here, we show that H. pylori-induced DNA damage occurs co-transcriptionally in S-phase cells that activate NF-κB signaling upon innate immune recognition of the lipopolysaccharide biosynthetic intermediate β-ADP-heptose by the ALPK1/TIFA signaling pathway. DNA damage depends on the bi-functional RfaE enzyme and the Cag pathogenicity island of H. pylori, is accompanied by replication fork stalling and can be observed also in primary cells derived from gastric organoids. Importantly, H. pylori-induced replication stress and DNA damage depend on the presence of co-transcriptional RNA/DNA hybrids (R-loops) that form in infected cells during S-phase as a consequence of β-ADP-heptose/ ALPK1/TIFA/NF-κB signaling. H. pylori resides in close proximity to S-phase cells in the gastric mucosa of gastritis patients. Taken together, our results link bacterial infection and NF-κB-driven innate immune responses to R-loop-dependent replication stress and DNA damage.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- DNA chemie genetika MeSH
- floxuridin MeSH
- glykosyltransferasy metabolismus MeSH
- Helicobacter pylori metabolismus patogenita MeSH
- infekce vyvolané Helicobacter pylori metabolismus mikrobiologie MeSH
- interakce hostitele a patogenu fyziologie MeSH
- lidé MeSH
- lipopolysacharidy metabolismus MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- nádory žaludku genetika mikrobiologie patologie MeSH
- NF-kappa B genetika metabolismus MeSH
- poškození DNA MeSH
- proteinkinasy genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- replikace DNA účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH