DNA methylation in the wild: epigenetic transgenerational inheritance can mediate adaptation in clones of wild strawberry (Fragaria vesca)
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 67985939
Akademie Věd České Republiky
20-00871S
Grantová Agentura České Republiky
23-04749S
Grantová Agentura České Republiky
764965
Horizon 2020 Framework Programme
Österreichischen Akademie der Wissenschaften
PubMed
38058250
DOI
10.1111/nph.19464
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, climate change, clonal plant, ecological epigenetics, environmentally induced epigenetic variation, inheritance, natural populations, transposons,
- MeSH
- buněčné klony MeSH
- epigeneze genetická MeSH
- fenotyp MeSH
- jahodník * genetika MeSH
- lidé MeSH
- metylace DNA * genetika MeSH
- rostliny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Due to the accelerating climate change, it is crucial to understand how plants adapt to rapid environmental changes. Such adaptation may be mediated by epigenetic mechanisms like DNA methylation, which could heritably alter phenotypes without changing the DNA sequence, especially across clonal generations. However, we are still missing robust evidence of the adaptive potential of DNA methylation in wild clonal populations. Here, we studied genetic, epigenetic and transcriptomic variation of Fragaria vesca, a predominantly clonally reproducing herb. We examined samples from 21 natural populations across three climatically distinct geographic regions, as well as clones of the same individuals grown in a common garden. We found that epigenetic variation was partly associated with climate of origin, particularly in non-CG contexts. Importantly, a large proportion of this variation was heritable across clonal generations. Additionally, a subset of these epigenetic changes affected the expression of genes mainly involved in plant growth and responses to pathogen and abiotic stress. These findings highlight the potential influence of epigenetic changes on phenotypic traits. Our findings indicate that variation in DNA methylation, which can be environmentally inducible and heritable, may enable clonal plant populations to adjust to their environmental conditions even in the absence of genetic adaptation.
Department of Biology Philipps University Marburg Karl von Frisch Strasse 8 D 35043 Marburg Germany
Department of Botany Faculty of Science Charles University Benátská 2 128 01 Prague Czechia
Department of Computer Science University of Leipzig Härtelstraße 16 18 Leipzig 04107 Germany
ecSeq Bioinformatics GmbH Sternwartenstraße 29 04103 Saxony Germany
Institute of Botany Czech Academy of Sciences Zámek 1 252 43 Průhonice Czechia
Zobrazit více v PubMed
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. 2021. Epigenetic inheritance and reproductive mode in plants and animals. Trends in Ecology & Evolution 36: 1124-1140.
Ashe A, Colot V, Oldroyd BP. 2021. How does epigenetics influence the course of evolution? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 376: 20200111.
Baduel P, Leduque B, Ignace A, Gy I, Gil J, Loudet O, Colot V, Quadrana L. 2021. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biology 22: 1-26.
Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151: 194-205.
Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. 2018. An Ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research: Atmospheres 123: 9391-9409.
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10: 1-4.
Darrow GM. 1966. The strawberry. History, breeding and physiology. New York, NY, USA: Holt, Rinehart and Winston.
Darwin C, Wallace A. 1858. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Journal of the Proceedings of the Linnean Society of London. Zoology 3: 45-62.
De Kort H, Panis B, Helsen K, Douzet R, Janssens SB, Honnay O. 2020. Pre-adaptation to climate change through topography-driven phenotypic plasticity. Journal of Ecology 108: 1465-1474.
De Kort H, Toivainen T, Van Nieuwerburgh F, Andrés J, Hytönen TP, Honnay O. 2022. Signatures of polygenic adaptation align with genome-wide methylation patterns in wild strawberry plants. New Phytologist 235: 1501-1514.
Díez Rodríguez B, Galanti D, Nunn A, Peña-Ponton C, Pérez-Bello P, Sammarco I, Jandrasits K, Becker C, De Paoli E, Verhoeven KJ et al. 2022. Epigenetic variation in the Lombardy Poplar along climatic gradients is independent of genetic structure and persists across clonal reproduction. bioRxiv. doi: 10.1101/2022.11.17.516862.
Dodd RS, Douhovnikoff V. 2016. Adjusting to global change through clonal growth and epigenetic variation. Frontiers in Ecology and Evolution 4.
Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ, Casale FP, Drewe P, Kahles A, Jean G, Vilhjálmsson B et al. 2015. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4: e05255.
Edger PP, VanBuren R, Colle M, Poorten TJ, Wai CM, Niederhuth CE, Alger EI, Ou S, Acharya CB, Wang J et al. 2018. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. GigaScience 7: 1-7.
Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. 2014. Genome-wide Hi-C analyses in wild type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Molecular Cell 55: 694-707.
Feng S, Jacobsen SE, Reik W. 2010. Epigenetic reprogramming in plant and animal development. Science 330: 622-627.
Finnegan EJ, Genger RK, Peacock WJ, Dennis ES. 1998. DNA methylation in plants. Annual Review of Plant Physiology and Plant Molecular Biology 49: 223-247.
Frels K, Chopra R, Dorn KM, Wyse DL, Marks MD, Anderson JA. 2019. Genetic diversity of field pennycress (Thlaspi arvense) reveals untapped variability and paths toward selection for domestication. Agronomy 9: 302.
Fultz D, Choudury SG, Slotkin RK. 2015. Silencing of active transposable elements in plants. Current Opinion in Plant Biology 27: 67-76.
Galanti D, Ramos-Cruzid D, Nunnid A, Rodríguez-Aré Valoid I, Scheepensid JF, Beckerid C, Bossdorfid O. 2022. Genetic and environmental drivers of large-scale epigenetic variation in Thlaspi arvense. PLoS Genetics 18: e1010452.
Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK. 2013. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Research 23: 628-637.
Gu T, Ren S, Wang Y, Han Y, Li Y. 2016. Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca. Molecular Genetics and Genomics 291: 1333-1345.
Gu Z, Gu L, Eils R, Schlesner M, Brors B. 2014. circlize implements and enhances circular visualization in R. Bioinformatics 30: 2811-2812.
Hilmarsson HS, Hytönen T, Isobe S, Göransson M, Toivainen T, Hallsson JH. 2017. Population genetic analysis of a global collection of Fragaria vesca using microsatellite markers. PLoS ONE 12: e0183384.
Jablonka EVA, Raz GAL. 2009. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quarterly Review of Biology 84: 131-176.
Johannes F, Schmitz RJ. 2019. Spontaneous epimutations in plants. New Phytologist 221: 1253-1259.
Jühling F, Kretzmer H, Bernhart SH, Otto C, Stadler PF, Hoffmann S. 2016. metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Research 26: 256-262.
Jung S, Lee T, Cheng CH, Buble K, Zheng P, Yu J, Humann J, Ficklin SP, Gasic K, Scott K et al. 2019. 15 years of GDR: new data and functionality in the genome database for Rosaceae. Nucleic Acids Research 47: D1137-D1145.
Kawakatsu T, Huang S, Shan C, Jupe F, Sasaki E, Schmitz RJJ, Urich MAA, Castanon R, Nery JRR, Barragan C et al. 2016. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166: 492-505.
Klimeš L, Klimešová J, Hendriks RJJ, Groenendael J. 1997. Clonal plant architecture: a comparative analysis of form and function. In: de Kroon H, van Groenendael J, eds. The ecology and evolution of clonal plants. Leiden, the Netherlands: Backhuys, 1-29.
Lang Z, Wang Y, Tang K, Tang D, Datsenka T, Cheng J, Zhang Y, Handa AK, Zhu JK. 2017. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences, USA 114: E4511-E4519.
Latzel V, Klimešová J. 2010. Transgenerational plasticity in clonal plants. Evolutionary Ecology 24: 1537-1543.
Latzel V, Rendina González AP, Rosenthal J. 2016. Epigenetic memory as a basis for intelligent behavior in clonal plants. Frontiers in Plant Science 7: 1354.
Li J, Koski MH, Ashman TL. 2012. Functional characterization of gynodioecy in Fragaria vesca ssp. bracteata (Rosaceae). Annals of Botany 109: 545-552.
Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, Zhang G, Zheng X, Zhang H, Zhang S et al. 2012. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics 13: 1-15.
Lloyd JPB, Lister R. 2021. Epigenome plasticity in plants. Nature Reviews Genetics 23: 55-68.
López M-E, Roquis D, Becker C, Denoyes B, Bucher E. 2022. DNA methylation dynamics during stress response in woodland strawberry (Fragaria vesca). Horticulture Research 9: uhac174.
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 1-21.
Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461: 1135-1138.
Martin GT, Seymour DK, Gaut BS. 2021. CHH methylation islands: a nonconserved feature of grass genomes that is positively associated with transposable elements but negatively associated with gene-body methylation. Genome Biology and Evolution 13: evab144.
Medrano M, Alonso C, Bazaga P, López E, Herrera CM. 2020. Comparative genetic and epigenetic diversity in pairs of sympatric, closely related plants with contrasting distribution ranges in south-eastern Iberian mountains. AoB Plants 12: plaa013.
Medrano M, Herrera CM, Bazaga P. 2014. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Molecular Ecology 23: 4926-4938.
Miryeganeh M, Marlétaz F, Gavriouchkina D, Saze H. 2022. De novo genome assembly and in natura epigenomics reveal salinity-induced DNA methylation in the mangrove tree Bruguiera gymnorhiza. New Phytologist 233: 2094-2110.
Miryeganeh M, Saze H. 2020. Epigenetic inheritance and plant evolution. Population Ecology 62: 17-27.
Münzbergová Z, Latzel V, Šurinová M, Hadincová V. 2019. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos 128: 124-134.
Niederhuth CE, Schmitz RJ. 2014. Covering your bases: inheritance of DNA methylation in plant genomes. Molecular Plant 7: 472-480.
Niederhuth CE, Schmitz RJ. 2017. Putting DNA methylation in context: from genomes to gene expression in plants. Biochimica et Biophysica Acta 1860: 149-156.
Nunn A, Can SN, Otto C, Fasold M, Diéz Rodríguez B, Fernández-Pozo N, Rensing SA, Stadler PF, Langenberger D. 2021. EpiDiverse Toolkit: a pipeline suite for the analysis of bisulfite sequencing data in ecological plant epigenetics. NAR Genomics and Bioinformatics 3: lqab106.
Nunn A, Otto C, Fasold M, Stadler PF, Langenberger D. 2022. Manipulating base quality scores enables variant calling from bisulfite sequencing alignments using conventional Bayesian approaches. BMC Genomics 23: 477.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P et al. 2020. cran - package vegan. Package v.2.5-7. [WWW document] URL https://cran.r-project.org/package=vegan [accessed 2 December 2023].
Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson T et al. 2019. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology 20: 275.
Pebesma E. 2018. Simple features for R: standardized support for spatial vector data. R Journal 10: 439-446.
Quinlan AR, Hall IM. 2010. BEDtools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841-842.
R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/
Rajkumar MS, Shankar R, Garg R, Jain M. 2020. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics 112: 3537-3548.
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. 2016. DeepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research 44: W160-W165.
Rey O, Danchin E, Mirouze M, Loot C, Blanchet S. 2016. Adaptation to global change: a transposable element-epigenetics perspective. Trends in Ecology and Evolution 31: 514-526.
Richards CL, Schrey AW, Pigliucci M. 2012. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecology Letters 15: 1016-1025.
Richards EJ. 2006. Inherited epigenetic variation - revisiting soft inheritance. Nature Reviews Genetics 7: 395-401.
Riggs AD, Porter TN. 1996. Overview of epigenetic mechanisms. Cold Spring Harbor Monograph Archive 32: 29-45.
Rothman KJ. 1990. No adjustments are needed for multiple comparisons. Epidemiology 1: 43-46.
Sammarco I, Münzbergová Z, Latzel V. 2022. DNA methylation can mediate local adaptation and response to climate change in the clonal plant Fragaria vesca: evidence from a European-scale reciprocal transplant experiment. Frontiers in Plant Science 13: 435.
Scheiner SM. 1993. Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24: 35-68.
Schulze J, Rufener R, Erhardt A, Stoll P. 2012. The relative importance of sexual and clonal reproduction for population growth in the perennial herb Fragaria vesca. Population Ecology 54: 369-380.
Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nature Genetics 43: 109-116.
Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, Cao KAL. 2019. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35: 3055-3062.
Slotkin RK, Martienssen R. 2007. Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics 8: 272-285.
South A. 2017. CRAN - package rnaturalearth: World Map Data from Natural Earth. Package v.0.1.0. [WWW document] URL http://cran.nexr.com/web/packages/rnaturalearth/index.html [accessed 2 December 2023].
Thiebaut F, Hemerly AS, Ferreira PCG. 2019. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Frontiers in Plant Science 10: 246.
Todd LA, Hall AC, Pietrobon V, Chan JNY, Laflamme G, Mekhail K. 2020. RNA-cDNA hybrids mediate transposition via different mechanisms. Scientific Reports 10: 1-12.
Verhoeven KJF, Preite V. 2014. Epigenetic variation in asexually reproducing organisms. Evolution 68: 644-655.
Wang G, Li H, Meng S, Yang J, Ye N, Zhang J. 2020. Analysis of global methylome and gene expression during carbon reserve mobilization in stems under soil drying. Plant Physiology 183: 1809-1824.
Xu J, Zhou S, Gong X, Song Y, van Nocker S, Ma F, Guan Q. 2018. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotechnology Journal 16: 672-687.
Yu G, Wang LG, Han Y, He QY. 2012. clusterprofiler: an R package for comparing biological themes among gene clusters. Omics 16: 284-287.
Zemach A, McDaniel IE, Silva P, Zilberman D. 2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328: 916-919.
Zemach A, Zilberman D. 2010. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Current Biology 20: R780-R785.
Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19: 489-506.
Zhang Y-Y, Fischer M, Colot V, Bossdorf O. 2013. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytologist 197: 314-322.
Zhang Y-Y, Latzel V, Fischer M, Bossdorf O. 2018. Understanding the evolutionary potential of epigenetic variation: a comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. Heredity 121: 257-265.
Zhu W, Yang C, Liu Q, Peng M, Li Q, Wang H, Chen X, Zhang B, Feng P, Chen T et al. 2023. Integrated analysis of DNA methylome and transcriptome reveals epigenetic regulation of cold tolerance in Litopenaeus vannamei. International Journal of Molecular Sciences 24: 24.
Zoldoš V, Biruš I, Muratović E, Šatović Z, Vojta A, Robin O, Pustahija F, Bogunić F, Bočkor VV, Siljak-Yakovlev S. 2018. Epigenetic differentiation of natural populations of Lilium bosniacum associated with contrasting habitat conditions. Genome Biology and Evolution 10: 291-303.
The evolutionary consequences of interactions between the epigenome, the genome and the environment