ecological epigenetics Dotaz Zobrazit nápovědu
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.
- MeSH
- ekologie * MeSH
- ekosystém MeSH
- epigeneze genetická * MeSH
- metylace DNA MeSH
- rostliny * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biological diversity within species can be an important driver of population and ecosystem functioning. Until now, such within-species diversity effects have been attributed to underlying variation in DNA sequence. However, within-species differences, and thus potentially functional biodiversity, can also be created by epigenetic variation. Here, we show that epigenetic diversity increases the productivity and stability of plant populations. Epigenetically diverse populations of Arabidopsis thaliana produce up to 40% more biomass than epigenetically uniform populations. The positive epigenetic diversity effects are strongest when populations are grown together with competitors and infected with pathogens, and they seem to be partly driven by complementarity among epigenotypes. Our study has two implications: first, we may need to re-evaluate previous within-species diversity studies where some effects could reflect epigenetic diversity; second, we need to incorporate epigenetics into basic ecological research, by quantifying natural epigenetic diversity and testing for its ecological consequences across many different species.
- MeSH
- Arabidopsis genetika růst a vývoj mikrobiologie MeSH
- biodiverzita * MeSH
- ekosystém MeSH
- epigeneze genetická * MeSH
- nemoci rostlin genetika mikrobiologie MeSH
- plevel růst a vývoj MeSH
- polymorfismus genetický MeSH
- Pseudomonas syringae fyziologie MeSH
- Senecio růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Epigenetics is the study of heritable alterations in phenotypes that are not caused by changes in DNA sequence. In the present study, we characterized the genetic and phenotypic alterations of the bacterial plant pathogen Xanthomonas campestris pv. campestris (Xcc) under different treatments with several epigenetic modulating chemicals. The use of DNA demethylating chemicals unambiguously caused a durable decrease in Xcc bacterial virulence, even after its reisolation from infected plants. The first-time use of chemicals to modify the activity of sirtuins also showed some noticeable results in terms of increasing bacterial virulence, but this effect was not typically stable. Changes in treated strains were also confirmed by using methylation sensitive amplification (MSAP), but with respect to registered SNPs induction, it was necessary to consider their contribution to the observed polymorphism. The molecular basis of the altered virulence was deciphered by using dualRNA-seq analysis of treated Xcc strains infecting Brassica rapa plants. The results of the present study should promote more intensive research in the generally understudied field of bacterial epigenetics, where artificially induced modification by epigenetic modulating chemicals can significantly increase the diversity of bacterial properties and potentially contribute to the further development of the fields, such as bacterial ecology and adaptation.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Brassica rapa mikrobiologie MeSH
- epigeneze genetická účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- jednonukleotidový polymorfismus MeSH
- metylace DNA MeSH
- puriny farmakologie MeSH
- sirtuiny antagonisté a inhibitory genetika metabolismus MeSH
- virulence genetika MeSH
- Xanthomonas campestris účinky léků genetika patogenita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
S rozvojem molekulární a evoluční biologie si víc a víc uvědomujeme komplikovanost sítí vztahů mezi jednotlivými organismy v biosféře. Každý druh ve své existenci životně závisí na jiných druzích a ty zase na dalších. Někdy je souhra dvou druhů tak těsná, že vyhynutí jednoho druhu znamená zánik obou, někdy dokonce již popisujeme soustavu jako jeden druh. Evoluční vznik každého druhu je silně ovlivněn horizontálními přenosy genů, endosymbiózami etc. Jakýkoli eukaryotický organismus na Zemi, včetně člověka, je složitou stavebnicí genů rozmanitého původu. S nástupem epigenetiky a epigenetické dědičnosti vzniká představa, že prostředí změnu nejen vybírá, nýbrž především vytváří a že tato změna se různými mechanismy může dědit. Člověk tedy není izolován od okolní přírody. Je její součástí v mnohem silnějším smyslu, než jsme si kdy mysleli.
The contemporary development of molecular genetics and evolutionary biology and new informations stemming from both these fields learn us, that the complexity of life and global net of relationships in each and every ecosystem is much more complex as previously thought. Every species is in its existence dependent on other species and they still on others. Cooperation between the two species is sometimes so tightly connected, that extinction of one species inevitably leads to the extinction of the other. We even sometimes describe the system as one species altogether. Each and every eucaryotic organism on this planet is a complicated system of genes of different origin, with strong influence of horizontal gene transfer, endosymbiosis etc. The research in the field of epigenetics and epigenetic inheritance lead us to the idea, that the environment not only select the new forms of a species, but that the environemnt first and foremost induces the emergence of new phenotypes and that these changes are or at least sometimes can be inherited. Human being is not isolated from the rest of the nature. We are part of the nature in much stronger sense than we have ever considered.
Genetika se mění. DNA není neměnný templát ani jediný dědičný činitel. Rozšiřuje se povědomí, že se z generace do generace může přenášet i negenetická informace. Nově navržený pojem inkluzivní neboli souhrnná dědičnost sjednocuje genetickou dědičnost s dědičností negenetickou. Mechanismus negenetické dědičnosti popisuje epigenetika, spadají sem rodičovské efekty i dědičnost ekologická a kulturní. Lze očekávat fundamentální proměnu sociální, kognitivní i afektivní neurovědy i dalších sociálních věd. Klíčová slova: souhrnná (inkluzivní) dědičnost – epigenetika – rodičovské efekty – kulturní heredita
The science of genetics is undergoing shift. DNA is not unchanging template of heredity and the sole agent of inheritance. There is increasing awareness that non-genetic information can also be inherited across generations. To unify genetic and non-genetic heritability the concepts of inclusive heritability were recently proposed. Non-genetic inherited information can arise through several mechanisms: epigenetics, parental effects, ecological and cultural inheritance. A fundamental change in the social, cognitive and affective neuroscience and other social sciences is being expected. Keywords: inclusive heritability – epigenetics – parental effects – cultural inheritance
- Klíčová slova
- souhrnná dědičnost, inkluzivní dědičnost, rodičovské efekty, kulturní heredita,
- MeSH
- dědičnost * MeSH
- epigenomika * MeSH
- lékařská genetika * MeSH
- lidé MeSH
- neurovědy * MeSH
- Check Tag
- lidé MeSH
The protozoan parasite Toxoplasma gondii is known to induce specific behavioural changes in its intermediate hosts, including humans, that are believed to increase the chance of its successful transmission to the definitive host, the cat. The most conspicuous change is the so-called fatal attraction phenomenon, the switch from the mice's and rats' natural fear of the smell of cats toward an attraction to this smell. The mechanism of this manipulation activity is unknown; however, many indices suggest that changes in the concentrations of dopamine and testosterone are involved. In this issue of Molecular Ecology, Hari Dass & Vyas (2014) present results of a study showing that, by hypomethylation of certain regulatory elements of key gene, Toxoplasma is able to reprogramme the brain's genetic machinery in such a way that cat odour activates and changes the wiring of the medial amygdala circuits responsible for sexual behaviour. This study delivers the first clear evidence of a parasite's ability to use sophisticated epigenetic engineering techniques for the manipulation of the phenotype of its infected host.
Epigenetic variation has been proposed to contribute to the success of asexual plants, either as a contributor to phenotypic plasticity or by enabling transient adaptation via selection on transgenerationally stable, but reversible, epialleles. While recent studies in experimental plant populations have shown the potential for epigenetic mechanisms to contribute to adaptive phenotypes, it remains unknown whether heritable variation in ecologically relevant traits is at least partially epigenetically determined in natural populations. Here, we tested the hypothesis that DNA methylation variation contributes to heritable differences in flowering time within a single widespread apomictic clonal lineage of the common dandelion (Taraxacum officinale s. lat.). Apomictic clone members of the same apomictic lineage collected from different field sites showed heritable differences in flowering time, which was correlated with inherited differences in methylation-sensitive AFLP marker profiles. Differences in flowering between apomictic clone members were significantly reduced after in vivo demethylation using the DNA methyltransferase inhibitor zebularine. This synchronization of flowering times suggests that flowering time divergence within an apomictic lineage was mediated by differences in DNA methylation. While the underlying basis of the methylation polymorphism at functional flowering time-affecting loci remains to be demonstrated, our study shows that epigenetic variation contributes to heritable phenotypic divergence in ecologically relevant traits in natural plant populations. This result also suggests that epigenetic mechanisms can facilitate adaptive divergence within genetically uniform asexual lineages.
- MeSH
- analýza polymorfismu délky amplifikovaných restrikčních fragmentů MeSH
- epigeneze genetická * MeSH
- květy fyziologie MeSH
- metylace DNA * MeSH
- mikrosatelitní repetice MeSH
- nepohlavní rozmnožování MeSH
- populační genetika MeSH
- Taraxacum genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Finsko MeSH
- Německo MeSH
Příčiny duševních poruch jsou komplexní, podílejí se na nich faktory genetické (bodové polymorfismy DNA, variace počtu kopií v oblasti DNA, epistáze genů) i faktory zevního prostředí (biologické, psychologické, sociální, spirituální), při interakcích genů a prostředí se pak nezřídka uplatňuje epigenetika. Tento článek podává přehled hlavních obecných principů, které se uplatňují jako příčiny duševních poruch. K moderním trendům výzkumu patří například nové postupy genetického vyšetřování včetně inovativních statistických postupů zpracování jejich výsledků, objektivizace a kvantifikace vlivů zevního prostředí, vytváření nadnárodních multicentrických vědeckých konsorcií či hledání genetických a environmentálních faktorů preventivních.
Causes of mental disorders are complex. Both genetic (single nucleotide polymorphisms, copy number variations, epistasis) and environmental (biological, psychological, social, spiritual) factors participate in their etiology. Epigenetics frequently plays an important role in gene-environment interactions. This review sums up the basic knowledge on general principles in etiology of mental disorders. New DNA sequencing techniques including innovative statistical procedures, validation and quantification of environmental factors, creation of international multicentric research consortia or seeking of protective factors in etiology of mental disorders belong to recent trends.
- MeSH
- duševní poruchy * etiologie genetika MeSH
- epigenomika MeSH
- genetika MeSH
- lidé MeSH
- poruchy vyvolané vnějšími činiteli MeSH
- sociální prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Despite essential progress towards understanding the evolution of cooperative behaviour, we still lack detailed knowledge about its underlying molecular mechanisms, genetic basis, evolutionary dynamics and ontogeny. An international workshop "Genetics and Development of Cooperation," organized by the University of Bern (Switzerland), aimed at discussing the current progress in this research field and suggesting avenues for future research. This review uses the major themes of the meeting as a springboard to synthesize the concepts of genetic and nongenetic inheritance of cooperation, and to review a quantitative genetic framework that allows for the inclusion of indirect genetic effects. Furthermore, we argue that including nongenetic inheritance, such as transgenerational epigenetic effects, parental effects, ecological and cultural inheritance, provides a more nuanced view of the evolution of cooperation. We summarize those genes and molecular pathways in a range of species that seem promising candidates for mechanisms underlying cooperative behaviours. Concerning the neurobiological substrate of cooperation, we suggest three cognitive skills necessary for the ability to cooperate: (i) event memory, (ii) synchrony with others and (iii) responsiveness to others. Taking a closer look at the developmental trajectories that lead to the expression of cooperative behaviours, we discuss the dichotomy between early morphological specialization in social insects and more flexible behavioural specialization in cooperatively breeding vertebrates. Finally, we provide recommendations for which biological systems and species may be particularly suitable, which specific traits and parameters should be measured, what type of approaches should be followed, and which methods should be employed in studies of cooperation to better understand how cooperation evolves and manifests in nature.
- MeSH
- altruismus MeSH
- biologická evoluce * MeSH
- chování zvířat MeSH
- epigeneze genetická MeSH
- fenotyp MeSH
- genetická zdatnost MeSH
- kongresy jako téma MeSH
- kooperační chování * MeSH
- neurosekreční systémy fyziologie MeSH
- paměť MeSH
- vývojová biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Švýcarsko MeSH
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
- MeSH
- ekosystém MeSH
- expozom * MeSH
- hodnocení rizik MeSH
- lidé MeSH
- těhotenství MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- životní styl MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH