• This record comes from PubMed

A New Promising Material for Biological Applications: Multilevel Physical Modification of AgNP-Decorated PEEK

. 2023 Dec 05 ; 13 (24) : . [epub] 20231205

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In the case of polymer medical devices, the surface design plays a crucial role in the contact with human tissue. The use of AgNPs as antibacterial agents is well known; however, there is still more to be investigated about their anchoring into the polymer surface. This study describes the changes in the surface morphology and behaviour in the biological environment of polyetheretherketone (PEEK) with immobilised AgNPs after different surface modifications. The initial composites were prepared by immobilising silver nanoparticles from a colloid solution in the upper surface layers of polyetheretherketone (PEEK). The prepared samples (Ag/PEEK) had a planar morphology and were further modified with a KrF laser, a GaN laser, and an Ar plasma. The samples were studied using the AFM method to visualise changes in surface morphology and obtain information on the height of the structures and other surface parameters. A comparative analysis of the nanoparticles and polymers was performed using FEG-SEM. The chemical composition of the surface of the samples and optical activity were studied using XPS and UV-Vis spectroscopy. Finally, drop plate antibacterial and cytotoxicity tests were performed to determine the role of Ag nanoparticles after modification and suitability of the surface, which are important for the use of the resulting composite in biomedical applications.

See more in PubMed

Verma S., Sharma N., Kango S., Sharma S. Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. Eur. Polym. J. 2021;147:110295. doi: 10.1016/j.eurpolymj.2021.110295. DOI

Najeeb S., Zafar M.S., Khurshid Z., Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016;60:12–19. doi: 10.1016/j.jpor.2015.10.001. PubMed DOI

Skirbutis G., Dzingutė A., Masiliūnaitė V., Šulcaitė G., Žilinskas J. A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija. 2017;19:19–23. PubMed

Cruz-Pacheco A.F., Muñoz-Castiblanco D.T., Cuaspud J.A.G., Paredes-Madrid L., Vargas C.A.P., Zambrano J.J.M., Gómez C.A.P. Coating of Polyetheretherketone Films with Silver Nanoparticles by a Simple Chemical Reduction Method and Their Antibacterial Activity. Coatings. 2019;9:91. doi: 10.3390/coatings9020091. DOI

Patrascu J.M., Nedelcu I.A., Sonmez M., Ficai D., Ficai A., Vasile B.S., Ungureanu C., Albu M.G., Andor B., Andronescu E., et al. Composite Scaffolds Based on Silver Nanoparticles for Biomedical Applications. J. Nanomater. 2015;2015:587989. doi: 10.1155/2015/587989. DOI

Hensel R.C., Braunger M.L., Oliveira B., Shimizu F.M., Oliveira O.N., Hillenkamp M., Riul A., Rodrigues V. Controlled Incorporation of Silver Nanoparticles into Layer-by-Layer Polymer Films for Reusable Electronic Tongues. ACS Appl. Nano Mater. 2021;4:14231–14240. doi: 10.1021/acsanm.1c03797. DOI

Cheng Y.-J., Zeiger D.N., Howarter J.A., Zhang X., Lin N.J., Antonucci J.M., Lin-Gibson S. In situ formation of silver nanoparticles in photocrosslinking polymers. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011;97B:124–131. doi: 10.1002/jbm.b.31793. PubMed DOI

Siegel J., Vyhnálková B., Savenkova T., Pryjmaková J., Slepička P., Šlouf M., Hubáček T. Surface Engineering of AgNPs-Decorated Polyetheretherketone. Int. J. Mol. Sci. 2023;24:1432. doi: 10.3390/ijms24021432. PubMed DOI PMC

Novotna Z., Reznickova A., Rimpelova S., Vesely M., Kolska Z., Svorcik V. Tailoring of PEEK bioactivity for improved cell interaction: Plasma treatment in action. RSC Adv. 2015;5:41428–41436. doi: 10.1039/C5RA03861H. DOI

Csete M., Bor Z. Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 1998;133:5–16. doi: 10.1016/S0169-4332(98)00192-5. DOI

Al-Sharqi A., Apun K., Vincent M., Kanakaraju D., Bilung L.M. Enhancement of the Antibacterial Efficiency of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria Using Blue Laser Light. Int. J. Photoenergy. 2019;2019:2528490. doi: 10.1155/2019/2528490. DOI

Al-Ogaidi M.A., Rasheed B.G. Rasheed, Enhancement of Antimicrobial Activity of Silver Nanoparticles Using Lasers. Lasers Manuf. Mater. Process. 2022;9:610–621. doi: 10.1007/s40516-022-00192-4. DOI

Al-Ogaidi M., Al-Ogaidi I. Investigation of the antibacterial activity of Gram positive and Gram negative bacteria by 405 nm laser and nanoparticles. Plant Arch. 2020;20:1136–1140.

Zendehnam A., Ghasemi J., Zendehnam A. Zendehnam, Employing cold atmospheric plasma (Ar, He) on Ag thin film and their influences on surface morphology and anti-bacterial activity of silver films for water treatment. Int. Nano Lett. 2018;8:157–164. doi: 10.1007/s40089-018-0240-8. DOI

Hosseini S., Madaeni S., Khodabakhshi A., Zendehnam A. Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment. J. Membr. Sci. 2010;365:438–446. doi: 10.1016/j.memsci.2010.09.043. DOI

Katouah H., El-Metwaly N.M. Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. React. Funct. Polym. 2021;159:104810. doi: 10.1016/j.reactfunctpolym.2021.104810. DOI

Zheng Z., Liu P., Zhang X., Xin J., Wang Y., Zou X., Mei X., Zhang S., Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater. Today Bio. 2022;16:100402. doi: 10.1016/j.mtbio.2022.100402. PubMed DOI PMC

Ha S.-W., Hauert R., Ernst K.-H., Wintermantel E. Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications. Surf. Coatings Technol. 1997;96:293–299. doi: 10.1016/S0257-8972(97)00179-5. DOI

Jiang J., You D., Wang Q., Gao G. Novel fabrication and biological characterizations of AgNPs-decorated PEEK with gelatin functional nanocomposite to improve superior biomedical applications. J. Biomater. Sci. Polym. Ed. 2022;33:590–604. doi: 10.1080/09205063.2021.2004632. PubMed DOI

Deng L., Deng Y., Xie K. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloids Surf. B Biointerfaces. 2017;160:483–492. doi: 10.1016/j.colsurfb.2017.09.061. PubMed DOI

Omrani M.M., Kumar H., Mohamed M.G.A., Golovin K., Milani A.S., Hadjizadeh A., Kim K. Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021;109:622–629. doi: 10.1002/jbm.b.34726. PubMed DOI

Siegel J., Kaimlová M., Vyhnálková B., Trelin A., Lyutakov O., Slepička P., Švorčík V., Veselý M., Vokatá B., Malinský P., et al. Optomechanical Processing of Silver Colloids: New Generation of Nanoparticle–Polymer Composites with Bactericidal Effect. Int. J. Mol. Sci. 2021;22:312. doi: 10.3390/ijms22010312. PubMed DOI PMC

Herigstad B., Hamilton M., Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI

Markossian S., Grossman A., Brimacombe K. Assay Guidance Manual. [(accessed on 9 August 2022)];2004 Available online: https://www.ncbi.nlm.nih.gov/books/NBK53196/

Pryjmaková J., Vokatá B., Slepička P., Siegel J. Laser-Processed PEN with Au Nanowires Array: A Biocompatibility Assessment. Int. J. Mol. Sci. 2022;23:10953. doi: 10.3390/ijms231810953. PubMed DOI PMC

Allen N.S. A study of the light absorption properties of polymer films using UV-visible derivative spectroscopy. Polym. Photochem. 1981;1:43–55. doi: 10.1016/0144-2880(81)90014-2. DOI

Fajstavr D., Slepička P., Švorčík V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019;465:919–928. doi: 10.1016/j.apsusc.2018.09.167. DOI

Bonse J., Gräf S. Maxwell Meets Marangoni—A Review of Theories on Laser-Induced Periodic Surface Structures. Laser Photon-Rev. 2020;14:2000215. doi: 10.1002/lpor.202000215. DOI

Elashnikov R., Lyutakov O., Ulbrich P., Svorcik V. Light-activated polymethylmethacrylate nanofibers with antibacterial activity. Mater. Sci. Eng. C. 2016;64:229–235. doi: 10.1016/j.msec.2016.03.047. PubMed DOI

Martínez-Hernández M.E., Sandúa X., Rivero P.J., Goicoechea J., Arregui F.J. Self-Referenced Optical Fiber Sensor Based on LSPR Generated by Gold and Silver Nanoparticles Embedded in Layer-by-Layer Nanostructured Coatings. Chemosensors. 2022;10:77. doi: 10.3390/chemosensors10020077. DOI

Cebe P., Chung S.Y., Hong S.-D. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature. J. Appl. Polym. Sci. 1987;33:487–503. doi: 10.1002/app.1987.070330217. DOI

Ghods P., Isgor O., Brown J., Bensebaa F., Kingston D. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl. Surf. Sci. 2011;257:4669–4677. doi: 10.1016/j.apsusc.2010.12.120. DOI

Řezníčková A., Chaloupka A., Heitz J., Kolská Z., Švorčík V. Surface properties of polymers treated with F2 laser. Surf. Interface Anal. 2012;44:296–300. doi: 10.1002/sia.3801. DOI

Novotná Z., Rimpelová S., Juřík P., Veselý M., Kolská Z., Hubáček T., Borovec J., Švorčík V. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment. Nanoscale Res. Lett. 2017;12:424. doi: 10.1186/s11671-017-2182-x. PubMed DOI PMC

Zeng R., Rong M.Z., Zhang M.Q., Liang H.C., Zeng H.M. Laser ablation of polymer-based silver nanocomposites. Appl. Surf. Sci. 2002;187:239–247. doi: 10.1016/S0169-4332(01)00991-6. DOI

Kozioł R., Łapiński M., Syty P., Koszelow D., Sadowski W., Sienkiewicz J.E., Kościelska B. Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions. Beilstein J. Nanotechnol. 2020;11:494–507. doi: 10.3762/bjnano.11.40. PubMed DOI PMC

Meškinis Š., Čiegis A., Vasiliauskas A., Šlapikas K., Gudaitis R., Yaremchuk I., Fitio V., Bobitski Y., Tamulevičius S. Annealing Effects on Structure and Optical Properties of Diamond-like Carbon Films Containing Silver. Nanoscale Res. Lett. 2016;11:146. doi: 10.1186/s11671-016-1362-4. PubMed DOI PMC

Nicolle L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control. 2014;3:23. doi: 10.1186/2047-2994-3-23. PubMed DOI PMC

Dadi N.C.T., Radochová B., Vargová J., Bujdáková H. Impact of Healthcare-Associated Infections Connected to Medical Devices—An Update. Microorganisms. 2021;9:2332. doi: 10.3390/microorganisms9112332. PubMed DOI PMC

Götz F. Staphylococcus and biofilms. Mol. Microbiol. 2002;43:1367–1378. doi: 10.1046/j.1365-2958.2002.02827.x. PubMed DOI

Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI

Cheung G.Y.C., Bae J.S., Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12:547–569. doi: 10.1080/21505594.2021.1878688. PubMed DOI PMC

Ning C., Wang X., Li L., Zhu Y., Li M., Yu P., Zhou L., Zhou Z., Chen J., Tan G., et al. Concentration Ranges of Antibacterial Cations for Showing the Highest Antibacterial Efficacy but the Least Cytotoxicity against Mammalian Cells: Implications for a New Antibacterial Mechanism. Chem. Res. Toxicol. 2015;28:1815–1822. doi: 10.1021/acs.chemrestox.5b00258. PubMed DOI PMC

Ross A.M., Jiang Z., Bastmeyer M., Lahann J. Physical Aspects of Cell Culture Substrates: Topography, Roughness, and Elasticity. Small. 2012;8:336–355. doi: 10.1002/smll.201100934. PubMed DOI

Polívková M., Štrublová V., Hubáček T., Rimpelová S., Švorčík V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...