Pathological shifts in tryptophan metabolism in human term placenta exposed to LPS or poly I:C†

. 2024 Apr 11 ; 110 (4) : 722-738.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38145492

Grantová podpora
NU20-01-00264 Czech Health Research Council
GAUK 349521 Grant Agency of Charles University
LX22NPO5107 National Institute for Neurological Research
European Union-Next Generation EU

Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.

Zobrazit více v PubMed

Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I. Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci  2011; 29:663–671. PubMed PMC

Yoon BH, Romero R, Park JS, Kim M, Oh SY, Kim CJ, Jun JK. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol  2000; 183:1124–1129. PubMed

Rosenberg MD. Baby brains reflect maternal inflammation. Nat Neurosci  2018; 21:651–653. PubMed

Cordeiro CN, Tsimis M, Burd I. Infections and brain development. Obstet Gynecol Surv  2015; 70:644–655. PubMed PMC

Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci  2007; 27:10695–10702. PubMed PMC

Prearo Moco N, Camargo Batista RA, Fernandes Martin L, de  OliveiraLG, de  LimaG, Parada CM, Alarcao Dias-Melicio L, et al.  Toll-like Receptor-2 and -4 expression by maternal neutrophils in preterm labor. Gynecol Obstet Invest  2018; 83:1–8. PubMed

Romero R, Grivel JC, Tarca AL, Chaemsaithong P, Xu Z, Fitzgerald W, Hassan SS, Chaiworapongsa T, Margolis L. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol  2015; 213:836.e1–836.e18. PubMed PMC

Boyle AK, Rinaldi SF, Norman JE, Stock SJ. Preterm birth: inflammation, fetal injury and treatment strategies. J Reprod Immunol  2017; 119:62–66. PubMed

Kwon HK, Choi GB, Huh JR. Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol  2022; 43:230–244. PubMed PMC

Teshigawara T, Mouri A, Kubo H, Nakamura Y, Shiino T, Okada T, Morikawa M, Nabeshima T, Ozaki N, Yamamoto Y, Saito K. Changes in tryptophan metabolism during pregnancy and postpartum periods: potential involvement in postpartum depressive symptoms. J Affect Disord  2019; 255:168–176. PubMed

Zardoya-Laguardia P, Blaschitz A, Hirschmugl B, Lang I, Herzog SA, Nikitina L, Gauster M, Häusler M, Cervar-Zivkovic M, Karpf E, Maghzal GJ, Stanley CP, et al.  Endothelial indoleamine 2,3-dioxygenase-1 regulates the placental vascular tone and is deficient in intrauterine growth restriction and pre-eclampsia. Sci Rep  2018; 8:5488. PubMed PMC

Sedlmayr P, Blaschitz A, Stocker R. The role of placental tryptophan catabolism. Front Immunol  2014; 5:230. PubMed PMC

Badawy AA. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res  2017; 10:1178646917691938. PubMed PMC

Abad C, Karahoda R, Kastner P, Portillo R, Horackova H, Kucera R, Nachtigal P, Staud F. Profiling of tryptophan metabolic pathways in the rat Fetoplacental unit during gestation. Int J Mol Sci  2020; 21:7578. PubMed PMC

Karahoda R, Abad C, Horackova H, Kastner P, Zaugg J, Cerveny L, Kucera R, Albrecht C, Staud F. Dynamics of tryptophan metabolic pathways in human placenta and placental-derived cells: effect of gestation age and trophoblast differentiation. Front Cell Dev Biol  2020; 8:574034. PubMed PMC

Fujigaki S, Saito K, Takemura M, Maekawa N, Yamada Y, Wada H, Seishima M. L-tryptophan-L-kynurenine pathway metabolism accelerated by toxoplasma gondii infection is abolished in gamma interferon-gene-deficient mice: cross-regulation between inducible nitric oxide synthase and indoleamine-2,3-dioxygenase. Infect Immun  2002; 70:779–786. PubMed PMC

Schwarcz R. Kynurenines and glutamate: multiple links and therapeutic implications. Adv Pharmacol  2016; 76:13–37. PubMed PMC

Goeden N, Notarangelo FM, Pocivavsek A, Beggiato S, Bonnin A, Schwarcz R. Prenatal dynamics of kynurenine pathway metabolism in mice: focus on Kynurenic acid. Dev Neurosci  2017; 39:519–528. PubMed PMC

Peric M, Beceheli I, Cicin-Sain L, Desoye G, Stefulj J. Serotonin system in the human placenta - the knowns and unknowns. Front Endocrinol (Lausanne)  2022; 13:1061317. PubMed PMC

Billett EE. Monoamine oxidase (MAO) in human peripheral tissues. Neurotoxicology  2004; 25:139–148. PubMed

Laurent L, Deroy K, St-Pierre J, Cote F, Sanderson JT, Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie  2017; 140:159–165. PubMed

Mitchell JA, Hammer RE. Serotonin-induced disruption of implantation in the rat: I. Serum progesterone, implantation site blood flow, and intrauterine pO2. Biol Reprod  1983; 28:830–835. PubMed

Mitchell JA, Hammer RE, Goldman H. Serotonin-induced disruption of implantation in the rat: II. Suppression of decidualization. Biol Reprod  1983; 29:151–156. PubMed

Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, Blakely RD, Deneris ES, Levitt P. A transient placental source of serotonin for the fetal forebrain. Nature  2011; 472:347–350. PubMed PMC

Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res  2008; 45:50–60. PubMed

Iwasaki S, Nakazawa K, Sakai J, Kometani K, Iwashita M, Yoshimura Y, Maruyama T. Melatonin as a local regulator of human placental function. J Pineal Res  2005; 39:261–265. PubMed

Nagai R, Watanabe K, Wakatsuki A, Hamada F, Shinohara K, Hayashi Y, Imamura R, Fukaya T. Melatonin preserves fetal growth in rats by protecting against ischemia/reperfusion-induced oxidative/nitrosative mitochondrial damage in the placenta. J Pineal Res  2008; 45:271–276. PubMed

Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol  1999; 375:87–100. PubMed

Goeden N, Velasquez J, Arnold KA, Chan Y, Lund BT, Anderson GM, Bonnin A. Maternal inflammation disrupts Fetal neurodevelopment via increased placental output of serotonin to the Fetal brain. J Neurosci  2016; 36:6041–6049. PubMed PMC

Williams M, Zhang Z, Nance E, Drewes JL, Lesniak WG, Singh S, Chugani DC, Rangaramanujam K, Graham DR, Kannan S. Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and Fetal brain. Dev Neurosci  2017; 39:399–412. PubMed PMC

Manuelpillai U, Ligam P, Smythe G, Wallace EM, Hirst J, Walker DW. Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am J Obstet Gynecol  2005; 192:280–288. PubMed

Karahoda R, Robles M, Marushka J, Stranik J, Abad C, Horackova H, Tebbens JD, Vaillancourt C, Kacerovsky M, Staud F. Prenatal inflammation as a link between placental expression signature of tryptophan metabolism and preterm birth. Hum Mol Genet  2021; 30:2053–2067. PubMed PMC

Chiarello DI, Marin R, Proverbio F, Benzo Z, Pinero S, Botana D, Abad C. Effect of hypoxia on the calcium and magnesium content, lipid peroxidation level, and ca(2)(+)-ATPase activity of syncytiotrophoblast plasma membranes from placental explants. Biomed Res Int  2014; 2014:597357. PubMed PMC

Castro-Parodi M, Szpilbarg N, Dietrich V, Sordelli M, Reca A, Abán C, Maskin B, Farina MG, Damiano AE. Oxygen tension modulates AQP9 expression in human placenta. Placenta  2013; 34:690–698. PubMed

Mirdamadi K, Kwok J, Nevo O, Berger H, Piquette-Miller M. Impact of Th-17 cytokines on the regulation of transporters in human placental explants. Pharmaceutics  2021; 13:881. PubMed PMC

Carrasco G, Cruz MA, Gallardo V, Miguel P, Dominguez A, Gonzalez C. Transport and metabolism of serotonin in the human placenta from normal and severely pre-eclamptic pregnancies. Gynecol Obstet Invest  2000; 49:150–155. PubMed

Takikawa O, Kuroiwa T, Yamazaki F, Kido R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem  1988; 263:2041–2048. PubMed

Fitzpatrick PF. Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem  1999; 68:355–381. PubMed

Notarangelo FM, Beggiato S, Schwarcz R. Assessment of prenatal kynurenine metabolism using tissue slices: focus on the Neosynthesis of Kynurenic acid in mice. Dev Neurosci  2019; 41:102–111. PubMed PMC

Milart P, Urbanska EM, Turski WA, Paszkowski T, Sikorski R. Kynurenine aminotransferase I activity in human placenta. Placenta  2001; 22:259–261. PubMed

Blanco Ayala T, Lugo Huitrón R, Carmona Aparicio L, Ramírez Ortega D, González Esquivel D, Pedraza Chaverrí J, Pérez de la G, Ríos C, Schwarcz R, Pérez de la V. Alternative kynurenic acid synthesis routes studied in the rat cerebellum. Front Cell Neurosci  2015; 9:178. PubMed PMC

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature  1970; 227:680–685. PubMed

Heblik DK, P, Abad C, Karahoda R, Staud F, Kucera R. The fast and simplified method for determination of quinolinic acid in cell culture media from placental explants. Anal Bioanal Chem  2024; Under preparation.

Han VX, Patel S, Jones HF, Nielsen TC, Mohammad SS, Hofer MJ, Gold W, Brilot F, Lain SJ, Nassar N, Dale RC. Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: a systematic review. Transl Psychiatry  2021; 11:71. PubMed PMC

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget  2018; 9:7204–7218. PubMed PMC

Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine  2021; 91:153712. PubMed PMC

Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor Signaling and its role in cell-mediated immunity. Front Immunol  2022; 13:812774. PubMed PMC

Steinborn A, von  GallC, Hildenbrand R, Stutte HJ, Kaufmann M. Identification of placental cytokine-producing cells in term and preterm labor. Obstet Gynecol  1998; 91:329–335. PubMed

Ma Y, Mor G, Abrahams VM, Buhimschi IA, Buhimschi CS, Guller S. Alterations in syncytiotrophoblast cytokine expression following treatment with lipopolysaccharide. Am J Reprod Immunol  2006; 55:12–18. PubMed

Naruse K, Innes BA, Bulmer JN, Robson SC, Searle RF, Lash GE. Secretion of cytokines by villous cytotrophoblast and extravillous trophoblast in the first trimester of human pregnancy. J Reprod Immunol  2010; 86:148–150. PubMed

Reyes L, Wolfe B, Golos T. Hofbauer cells: placental macrophages of Fetal origin. Results Probl Cell Differ  2017; 62:45–60. PubMed

Steinborn A, Niederhut A, Solbach C, Hildenbrand R, Sohn C, Kaufmann M. Cytokine release from placental endothelial cells, a process associated with preterm labour in the absence of intrauterine infection. Cytokine  1999; 11:66–73. PubMed

Xu K, Liu H, Bai M, Gao J, Wu X, Yin Y. Redox properties of tryptophan metabolism and the concept of tryptophan use in pregnancy. Int J Mol Sci  2017; 18:1595. PubMed PMC

Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, Jacobs KR, Balzan R, Bruggemann J, O’Donnell M, Lenroot R, Guillemin GJ, et al.  Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry  2020; 25:2860–2872. PubMed PMC

Hajsl M, Hlavackova A, Broulikova K, Sramek M, Maly M, Dyr JE, Suttnar J. Tryptophan metabolism, inflammation, and oxidative stress in patients with neurovascular disease. Metabolites  2020; 10:208. PubMed PMC

Cussotto S, Delgado I, Anesi A, Dexpert S, Aubert A, Beau C, Forestier D, Ledaguenel P, Magne E, Mattivi F, Capuron L. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol  2020; 11:557. PubMed PMC

Lanser L, Kink P, Egger EM, Willenbacher W, Fuchs D, Weiss G, Kurz K. Inflammation-induced tryptophan breakdown is related with Anemia, fatigue, and depression in cancer. Front Immunol  2020; 11:249. PubMed PMC

Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M, Rosenfeld JV, Walker DW, Guillemin GJ, Morganti-Kossmann MC. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation  2015; 12:110. PubMed PMC

Cai Z, Tian S, Klein T, Tu L, Geenen LW, Koudstaal T, van den Bosch AE, de Rijke YB, Reiss IKM, Boersma E, van der Ley C, van Faassen M, et al.  Kynurenine metabolites predict survival in pulmonary arterial hypertension: a role for IL-6/IL-6Ralpha. Sci Rep  2022; 12:12326. PubMed PMC

Drewes JL, Meulendyke KA, Liao Z, Witwer KW, Gama L, Ubaida-Mohien C, Li M, Notarangelo FM, Tarwater PM, Schwarcz R, Graham DR, Zink MC. Quinolinic acid/tryptophan ratios predict neurological disease in SIV-infected macaques and remain elevated in the brain under cART. J Neurovirol  2015; 21:449–463. PubMed PMC

Yamada A, Akimoto H, Kagawa S, Guillemin GJ, Takikawa O. Proinflammatory cytokine interferon-gamma increases induction of indoleamine 2,3-dioxygenase in monocytic cells primed with amyloid beta peptide 1-42: implications for the pathogenesis of Alzheimer's disease. J Neurochem  2009; 110:791–800. PubMed

Murthy GG, Prideaux MA, Armstrong M, Kenney HM, Latchney SE, Susiarjo M, Murphy SP. Characterization of the temporal, cell-specific and interferon-inducible patterns of indoleamine 2,3 dioxygenase 1 (IDO1) expression in the human placenta across gestation. Placenta  2021; 115:129–138. PubMed

Salimi Elizei S, Poormasjedi-Meibod MS, Wang X, Kheirandish M, Ghahary A. Kynurenic acid downregulates IL-17/1L-23 axis in vitro. Mol Cell Biochem  2017; 431:55–65. PubMed

Wirthgen E, Hoeflich A, Rebl A, Gunther J. Kynurenic acid: the Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front Immunol  2017; 8:1957. PubMed PMC

Campbell BM, Charych E, Lee AW, Moller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci  2014; 8:12. PubMed PMC

Ligam P, Manuelpillai U, Wallace EM, Walker D. Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta  2005; 26:498–504. PubMed

Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res  1982; 247:184–187. PubMed

Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain  1992; 115:1249–1273. PubMed

Anderson G, Maes M, Berk M. Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog Neuropsychopharmacol Biol Psychiatry  2013; 42:101–114. PubMed

Millischer V, Heinzl M, Faka A, Resl M, Trepci A, Klammer C, Egger M, Dieplinger B, Clodi M, Schwieler L. Intravenous administration of LPS activates the kynurenine pathway in healthy male human subjects: a prospective placebo-controlled cross-over trial. J Neuroinflammation  2021; 18:158. PubMed PMC

Bell MJ, Kochanek PM, Heyes MP, Wisniewski SR, Sinz EH, Clark RS, Blight AR, Marion DW, Adelson PD. Quinolinic acid in the cerebrospinal fluid of children after traumatic brain injury. Crit Care Med  1999; 27:493–497. PubMed

Sinz EH, Kochanek PM, Heyes MP, Wisniewski SR, Bell MJ, Clark RS, DeKosky ST, Blight AR, Marion DW. Quinolinic acid is increased in CSF and associated with mortality after traumatic brain injury in humans. J Cereb Blood Flow Metab  1998; 18:610–615. PubMed

Cogo A, Mangin G, Maïer B, Callebert J, Mazighi M, Chabriat H, Launay JM, Huberfeld G, Kubis N. Increased serum QUIN/KYNA is a reliable biomarker of post-stroke cognitive decline. Molecular Neurodegeneration  2021; 16:7. PubMed PMC

Tan KM, Tint MT, Kothandaraman N, Michael N, Sadananthan SA, Velan SS, Fortier MV, Yap F, Tan KH, Gluckman PD, Chong YS, Chong MFF, et al.  The kynurenine pathway metabolites in cord blood positively correlate with early childhood adiposity. J Clin Endocrinol Metab  2022; 107:e2464–e2473. PubMed PMC

Abruzzese F, Greco M, Perlino E, Doonan S, Marra E. Lack of correlation between mRNA expression and enzymatic activity of the aspartate aminotransferase isoenzymes in various tissues of the rat. FEBS Lett  1995; 366:170–172. PubMed

Glanemann C, Loos A, Gorret N, Willis LB, O'Brien XM, Lessard PA, Sinskey AJ. Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol  2003; 61:61–68. PubMed

Brezun JM, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience  1999; 89:999–1002. PubMed

Chugani DC. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry  2002; 7:S16–S17. PubMed

Kannan S, Saadani-Makki F, Balakrishnan B, Dai H, Chakraborty PK, Janisse J, Muzik O, Romero R, Chugani DC. Decreased cortical serotonin in neonatal rabbits exposed to endotoxin in utero. J Cereb Blood Flow Metab  2011; 31:738–749. PubMed PMC

Haruki H, Hovius R, Pedersen MG, Johnsson K. Tetrahydrobiopterin biosynthesis as a potential target of the kynurenine pathway metabolite Xanthurenic acid. J Biol Chem  2016; 291:652–657. PubMed PMC

Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX. Melatonin and its relation to the immune system and inflammation. Ann N Y Acad Sci  2000; 917:376–386. PubMed

Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol  2010; 8:228–242. PubMed PMC

Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal immunological adaptation during normal pregnancy. Front Immunol  2020; 11:575197. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...