Pathological shifts in tryptophan metabolism in human term placenta exposed to LPS or poly I:C†
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
NU20-01-00264
Czech Health Research Council
GAUK 349521
Grant Agency of Charles University
LX22NPO5107
National Institute for Neurological Research
European Union-Next Generation EU
PubMed
38145492
PubMed Central
PMC11017130
DOI
10.1093/biolre/ioad181
PII: 7494695
Knihovny.cz E-zdroje
- Klíčová slova
- fetal brain development, intrauterine infections, placenta, programming, tryptophan metabolism,
- MeSH
- indolamin-2,3,-dioxygenasa metabolismus MeSH
- kynurenin * metabolismus MeSH
- lidé MeSH
- lipopolysacharidy toxicita MeSH
- placenta * metabolismus MeSH
- poly I metabolismus MeSH
- serotonin metabolismus MeSH
- těhotenství MeSH
- tryptofan metabolismus MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- indolamin-2,3,-dioxygenasa MeSH
- kynurenin * MeSH
- lipopolysacharidy MeSH
- poly I MeSH
- serotonin MeSH
- tryptofan MeSH
Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.
Zobrazit více v PubMed
Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I. Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci 2011; 29:663–671. PubMed PMC
Yoon BH, Romero R, Park JS, Kim M, Oh SY, Kim CJ, Jun JK. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol 2000; 183:1124–1129. PubMed
Rosenberg MD. Baby brains reflect maternal inflammation. Nat Neurosci 2018; 21:651–653. PubMed
Cordeiro CN, Tsimis M, Burd I. Infections and brain development. Obstet Gynecol Surv 2015; 70:644–655. PubMed PMC
Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007; 27:10695–10702. PubMed PMC
Prearo Moco N, Camargo Batista RA, Fernandes Martin L, de OliveiraLG, de LimaG, Parada CM, Alarcao Dias-Melicio L, et al. Toll-like Receptor-2 and -4 expression by maternal neutrophils in preterm labor. Gynecol Obstet Invest 2018; 83:1–8. PubMed
Romero R, Grivel JC, Tarca AL, Chaemsaithong P, Xu Z, Fitzgerald W, Hassan SS, Chaiworapongsa T, Margolis L. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol 2015; 213:836.e1–836.e18. PubMed PMC
Boyle AK, Rinaldi SF, Norman JE, Stock SJ. Preterm birth: inflammation, fetal injury and treatment strategies. J Reprod Immunol 2017; 119:62–66. PubMed
Kwon HK, Choi GB, Huh JR. Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol 2022; 43:230–244. PubMed PMC
Teshigawara T, Mouri A, Kubo H, Nakamura Y, Shiino T, Okada T, Morikawa M, Nabeshima T, Ozaki N, Yamamoto Y, Saito K. Changes in tryptophan metabolism during pregnancy and postpartum periods: potential involvement in postpartum depressive symptoms. J Affect Disord 2019; 255:168–176. PubMed
Zardoya-Laguardia P, Blaschitz A, Hirschmugl B, Lang I, Herzog SA, Nikitina L, Gauster M, Häusler M, Cervar-Zivkovic M, Karpf E, Maghzal GJ, Stanley CP, et al. Endothelial indoleamine 2,3-dioxygenase-1 regulates the placental vascular tone and is deficient in intrauterine growth restriction and pre-eclampsia. Sci Rep 2018; 8:5488. PubMed PMC
Sedlmayr P, Blaschitz A, Stocker R. The role of placental tryptophan catabolism. Front Immunol 2014; 5:230. PubMed PMC
Badawy AA. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 2017; 10:1178646917691938. PubMed PMC
Abad C, Karahoda R, Kastner P, Portillo R, Horackova H, Kucera R, Nachtigal P, Staud F. Profiling of tryptophan metabolic pathways in the rat Fetoplacental unit during gestation. Int J Mol Sci 2020; 21:7578. PubMed PMC
Karahoda R, Abad C, Horackova H, Kastner P, Zaugg J, Cerveny L, Kucera R, Albrecht C, Staud F. Dynamics of tryptophan metabolic pathways in human placenta and placental-derived cells: effect of gestation age and trophoblast differentiation. Front Cell Dev Biol 2020; 8:574034. PubMed PMC
Fujigaki S, Saito K, Takemura M, Maekawa N, Yamada Y, Wada H, Seishima M. L-tryptophan-L-kynurenine pathway metabolism accelerated by toxoplasma gondii infection is abolished in gamma interferon-gene-deficient mice: cross-regulation between inducible nitric oxide synthase and indoleamine-2,3-dioxygenase. Infect Immun 2002; 70:779–786. PubMed PMC
Schwarcz R. Kynurenines and glutamate: multiple links and therapeutic implications. Adv Pharmacol 2016; 76:13–37. PubMed PMC
Goeden N, Notarangelo FM, Pocivavsek A, Beggiato S, Bonnin A, Schwarcz R. Prenatal dynamics of kynurenine pathway metabolism in mice: focus on Kynurenic acid. Dev Neurosci 2017; 39:519–528. PubMed PMC
Peric M, Beceheli I, Cicin-Sain L, Desoye G, Stefulj J. Serotonin system in the human placenta - the knowns and unknowns. Front Endocrinol (Lausanne) 2022; 13:1061317. PubMed PMC
Billett EE. Monoamine oxidase (MAO) in human peripheral tissues. Neurotoxicology 2004; 25:139–148. PubMed
Laurent L, Deroy K, St-Pierre J, Cote F, Sanderson JT, Vaillancourt C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie 2017; 140:159–165. PubMed
Mitchell JA, Hammer RE. Serotonin-induced disruption of implantation in the rat: I. Serum progesterone, implantation site blood flow, and intrauterine pO2. Biol Reprod 1983; 28:830–835. PubMed
Mitchell JA, Hammer RE, Goldman H. Serotonin-induced disruption of implantation in the rat: II. Suppression of decidualization. Biol Reprod 1983; 29:151–156. PubMed
Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, Blakely RD, Deneris ES, Levitt P. A transient placental source of serotonin for the fetal forebrain. Nature 2011; 472:347–350. PubMed PMC
Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. J Pineal Res 2008; 45:50–60. PubMed
Iwasaki S, Nakazawa K, Sakai J, Kometani K, Iwashita M, Yoshimura Y, Maruyama T. Melatonin as a local regulator of human placental function. J Pineal Res 2005; 39:261–265. PubMed
Nagai R, Watanabe K, Wakatsuki A, Hamada F, Shinohara K, Hayashi Y, Imamura R, Fukaya T. Melatonin preserves fetal growth in rats by protecting against ischemia/reperfusion-induced oxidative/nitrosative mitochondrial damage in the placenta. J Pineal Res 2008; 45:271–276. PubMed
Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 1999; 375:87–100. PubMed
Goeden N, Velasquez J, Arnold KA, Chan Y, Lund BT, Anderson GM, Bonnin A. Maternal inflammation disrupts Fetal neurodevelopment via increased placental output of serotonin to the Fetal brain. J Neurosci 2016; 36:6041–6049. PubMed PMC
Williams M, Zhang Z, Nance E, Drewes JL, Lesniak WG, Singh S, Chugani DC, Rangaramanujam K, Graham DR, Kannan S. Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and Fetal brain. Dev Neurosci 2017; 39:399–412. PubMed PMC
Manuelpillai U, Ligam P, Smythe G, Wallace EM, Hirst J, Walker DW. Identification of kynurenine pathway enzyme mRNAs and metabolites in human placenta: up-regulation by inflammatory stimuli and with clinical infection. Am J Obstet Gynecol 2005; 192:280–288. PubMed
Karahoda R, Robles M, Marushka J, Stranik J, Abad C, Horackova H, Tebbens JD, Vaillancourt C, Kacerovsky M, Staud F. Prenatal inflammation as a link between placental expression signature of tryptophan metabolism and preterm birth. Hum Mol Genet 2021; 30:2053–2067. PubMed PMC
Chiarello DI, Marin R, Proverbio F, Benzo Z, Pinero S, Botana D, Abad C. Effect of hypoxia on the calcium and magnesium content, lipid peroxidation level, and ca(2)(+)-ATPase activity of syncytiotrophoblast plasma membranes from placental explants. Biomed Res Int 2014; 2014:597357. PubMed PMC
Castro-Parodi M, Szpilbarg N, Dietrich V, Sordelli M, Reca A, Abán C, Maskin B, Farina MG, Damiano AE. Oxygen tension modulates AQP9 expression in human placenta. Placenta 2013; 34:690–698. PubMed
Mirdamadi K, Kwok J, Nevo O, Berger H, Piquette-Miller M. Impact of Th-17 cytokines on the regulation of transporters in human placental explants. Pharmaceutics 2021; 13:881. PubMed PMC
Carrasco G, Cruz MA, Gallardo V, Miguel P, Dominguez A, Gonzalez C. Transport and metabolism of serotonin in the human placenta from normal and severely pre-eclamptic pregnancies. Gynecol Obstet Invest 2000; 49:150–155. PubMed
Takikawa O, Kuroiwa T, Yamazaki F, Kido R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem 1988; 263:2041–2048. PubMed
Fitzpatrick PF. Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem 1999; 68:355–381. PubMed
Notarangelo FM, Beggiato S, Schwarcz R. Assessment of prenatal kynurenine metabolism using tissue slices: focus on the Neosynthesis of Kynurenic acid in mice. Dev Neurosci 2019; 41:102–111. PubMed PMC
Milart P, Urbanska EM, Turski WA, Paszkowski T, Sikorski R. Kynurenine aminotransferase I activity in human placenta. Placenta 2001; 22:259–261. PubMed
Blanco Ayala T, Lugo Huitrón R, Carmona Aparicio L, Ramírez Ortega D, González Esquivel D, Pedraza Chaverrí J, Pérez de la G, Ríos C, Schwarcz R, Pérez de la V. Alternative kynurenic acid synthesis routes studied in the rat cerebellum. Front Cell Neurosci 2015; 9:178. PubMed PMC
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685. PubMed
Heblik DK, P, Abad C, Karahoda R, Staud F, Kucera R. The fast and simplified method for determination of quinolinic acid in cell culture media from placental explants. Anal Bioanal Chem 2024; Under preparation.
Han VX, Patel S, Jones HF, Nielsen TC, Mohammad SS, Hofer MJ, Gold W, Brilot F, Lain SJ, Nassar N, Dale RC. Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: a systematic review. Transl Psychiatry 2021; 11:71. PubMed PMC
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9:7204–7218. PubMed PMC
Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine 2021; 91:153712. PubMed PMC
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor Signaling and its role in cell-mediated immunity. Front Immunol 2022; 13:812774. PubMed PMC
Steinborn A, von GallC, Hildenbrand R, Stutte HJ, Kaufmann M. Identification of placental cytokine-producing cells in term and preterm labor. Obstet Gynecol 1998; 91:329–335. PubMed
Ma Y, Mor G, Abrahams VM, Buhimschi IA, Buhimschi CS, Guller S. Alterations in syncytiotrophoblast cytokine expression following treatment with lipopolysaccharide. Am J Reprod Immunol 2006; 55:12–18. PubMed
Naruse K, Innes BA, Bulmer JN, Robson SC, Searle RF, Lash GE. Secretion of cytokines by villous cytotrophoblast and extravillous trophoblast in the first trimester of human pregnancy. J Reprod Immunol 2010; 86:148–150. PubMed
Reyes L, Wolfe B, Golos T. Hofbauer cells: placental macrophages of Fetal origin. Results Probl Cell Differ 2017; 62:45–60. PubMed
Steinborn A, Niederhut A, Solbach C, Hildenbrand R, Sohn C, Kaufmann M. Cytokine release from placental endothelial cells, a process associated with preterm labour in the absence of intrauterine infection. Cytokine 1999; 11:66–73. PubMed
Xu K, Liu H, Bai M, Gao J, Wu X, Yin Y. Redox properties of tryptophan metabolism and the concept of tryptophan use in pregnancy. Int J Mol Sci 2017; 18:1595. PubMed PMC
Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, Jacobs KR, Balzan R, Bruggemann J, O’Donnell M, Lenroot R, Guillemin GJ, et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry 2020; 25:2860–2872. PubMed PMC
Hajsl M, Hlavackova A, Broulikova K, Sramek M, Maly M, Dyr JE, Suttnar J. Tryptophan metabolism, inflammation, and oxidative stress in patients with neurovascular disease. Metabolites 2020; 10:208. PubMed PMC
Cussotto S, Delgado I, Anesi A, Dexpert S, Aubert A, Beau C, Forestier D, Ledaguenel P, Magne E, Mattivi F, Capuron L. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol 2020; 11:557. PubMed PMC
Lanser L, Kink P, Egger EM, Willenbacher W, Fuchs D, Weiss G, Kurz K. Inflammation-induced tryptophan breakdown is related with Anemia, fatigue, and depression in cancer. Front Immunol 2020; 11:249. PubMed PMC
Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M, Rosenfeld JV, Walker DW, Guillemin GJ, Morganti-Kossmann MC. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation 2015; 12:110. PubMed PMC
Cai Z, Tian S, Klein T, Tu L, Geenen LW, Koudstaal T, van den Bosch AE, de Rijke YB, Reiss IKM, Boersma E, van der Ley C, van Faassen M, et al. Kynurenine metabolites predict survival in pulmonary arterial hypertension: a role for IL-6/IL-6Ralpha. Sci Rep 2022; 12:12326. PubMed PMC
Drewes JL, Meulendyke KA, Liao Z, Witwer KW, Gama L, Ubaida-Mohien C, Li M, Notarangelo FM, Tarwater PM, Schwarcz R, Graham DR, Zink MC. Quinolinic acid/tryptophan ratios predict neurological disease in SIV-infected macaques and remain elevated in the brain under cART. J Neurovirol 2015; 21:449–463. PubMed PMC
Yamada A, Akimoto H, Kagawa S, Guillemin GJ, Takikawa O. Proinflammatory cytokine interferon-gamma increases induction of indoleamine 2,3-dioxygenase in monocytic cells primed with amyloid beta peptide 1-42: implications for the pathogenesis of Alzheimer's disease. J Neurochem 2009; 110:791–800. PubMed
Murthy GG, Prideaux MA, Armstrong M, Kenney HM, Latchney SE, Susiarjo M, Murphy SP. Characterization of the temporal, cell-specific and interferon-inducible patterns of indoleamine 2,3 dioxygenase 1 (IDO1) expression in the human placenta across gestation. Placenta 2021; 115:129–138. PubMed
Salimi Elizei S, Poormasjedi-Meibod MS, Wang X, Kheirandish M, Ghahary A. Kynurenic acid downregulates IL-17/1L-23 axis in vitro. Mol Cell Biochem 2017; 431:55–65. PubMed
Wirthgen E, Hoeflich A, Rebl A, Gunther J. Kynurenic acid: the Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front Immunol 2017; 8:1957. PubMed PMC
Campbell BM, Charych E, Lee AW, Moller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 2014; 8:12. PubMed PMC
Ligam P, Manuelpillai U, Wallace EM, Walker D. Localisation of indoleamine 2,3-dioxygenase and kynurenine hydroxylase in the human placenta and decidua: implications for role of the kynurenine pathway in pregnancy. Placenta 2005; 26:498–504. PubMed
Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 1982; 247:184–187. PubMed
Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 1992; 115:1249–1273. PubMed
Anderson G, Maes M, Berk M. Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:101–114. PubMed
Millischer V, Heinzl M, Faka A, Resl M, Trepci A, Klammer C, Egger M, Dieplinger B, Clodi M, Schwieler L. Intravenous administration of LPS activates the kynurenine pathway in healthy male human subjects: a prospective placebo-controlled cross-over trial. J Neuroinflammation 2021; 18:158. PubMed PMC
Bell MJ, Kochanek PM, Heyes MP, Wisniewski SR, Sinz EH, Clark RS, Blight AR, Marion DW, Adelson PD. Quinolinic acid in the cerebrospinal fluid of children after traumatic brain injury. Crit Care Med 1999; 27:493–497. PubMed
Sinz EH, Kochanek PM, Heyes MP, Wisniewski SR, Bell MJ, Clark RS, DeKosky ST, Blight AR, Marion DW. Quinolinic acid is increased in CSF and associated with mortality after traumatic brain injury in humans. J Cereb Blood Flow Metab 1998; 18:610–615. PubMed
Cogo A, Mangin G, Maïer B, Callebert J, Mazighi M, Chabriat H, Launay JM, Huberfeld G, Kubis N. Increased serum QUIN/KYNA is a reliable biomarker of post-stroke cognitive decline. Molecular Neurodegeneration 2021; 16:7. PubMed PMC
Tan KM, Tint MT, Kothandaraman N, Michael N, Sadananthan SA, Velan SS, Fortier MV, Yap F, Tan KH, Gluckman PD, Chong YS, Chong MFF, et al. The kynurenine pathway metabolites in cord blood positively correlate with early childhood adiposity. J Clin Endocrinol Metab 2022; 107:e2464–e2473. PubMed PMC
Abruzzese F, Greco M, Perlino E, Doonan S, Marra E. Lack of correlation between mRNA expression and enzymatic activity of the aspartate aminotransferase isoenzymes in various tissues of the rat. FEBS Lett 1995; 366:170–172. PubMed
Glanemann C, Loos A, Gorret N, Willis LB, O'Brien XM, Lessard PA, Sinskey AJ. Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 2003; 61:61–68. PubMed
Brezun JM, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 1999; 89:999–1002. PubMed
Chugani DC. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry 2002; 7:S16–S17. PubMed
Kannan S, Saadani-Makki F, Balakrishnan B, Dai H, Chakraborty PK, Janisse J, Muzik O, Romero R, Chugani DC. Decreased cortical serotonin in neonatal rabbits exposed to endotoxin in utero. J Cereb Blood Flow Metab 2011; 31:738–749. PubMed PMC
Haruki H, Hovius R, Pedersen MG, Johnsson K. Tetrahydrobiopterin biosynthesis as a potential target of the kynurenine pathway metabolite Xanthurenic acid. J Biol Chem 2016; 291:652–657. PubMed PMC
Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX. Melatonin and its relation to the immune system and inflammation. Ann N Y Acad Sci 2000; 917:376–386. PubMed
Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 2010; 8:228–242. PubMed PMC
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal immunological adaptation during normal pregnancy. Front Immunol 2020; 11:575197. PubMed PMC