Both Nitro Groups Are Essential for High Antitubercular Activity of 3,5-Dinitrobenzylsulfanyl Tetrazoles and 1,3,4-Oxadiazoles through the Deazaflavin-Dependent Nitroreductase Activation Pathway
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38157261
PubMed Central
PMC10788908
DOI
10.1021/acs.jmedchem.3c00925
Knihovny.cz E-resources
- MeSH
- Antitubercular Agents pharmacology chemistry MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium tuberculosis * MeSH
- Nitroreductases MeSH
- Oxadiazoles pharmacology chemistry MeSH
- Mammals MeSH
- Tetrazoles pharmacology chemistry MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antitubercular Agents MeSH
- Nitroreductases MeSH
- Oxadiazoles MeSH
- Tetrazoles MeSH
3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure-activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.
See more in PubMed
Global tuberculosis report 2022. World Health Organization, Geneva: 2022. Licence: CC BY-NC-SA 3.0 IGO.
Gler M. T.; Skripconoka V.; Sanchez-Garavito E.; Xiao H. P.; Cabrera-Rivero J. L.; Vargas-Vasquez D. E.; Gao M. Q.; Awad M.; Park S. K.; Shim T. S.; Suh G. Y.; Danilovits M.; Ogata H.; Kurve A.; Chang J.; Suzuki K.; Tupasi T.; Koh W. J.; Seaworth B.; Geiter L. J.; Wells C. D. Delamanid for Multidrug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2012, 366, 2151–2160. 10.1056/NEJMoa1112433. PubMed DOI
Singh R.; Manjunatha U.; Boshoff H. I. M.; Ha Y. H.; Niyomrattanakit P.; Ledwidge R.; Dowd C. S.; Lee I. Y.; Kim P.; Zhang L.; Kang S.; Keller T. H.; Jiricek J.; Barry C. E. III PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release. Science 2008, 322, 1392–1395. 10.1126/science.1164571. PubMed DOI PMC
Cellitti S. E.; Shaffer J.; Jones D. H.; Mukherjee T.; Gurumurthy M.; Bursulaya B.; Boshoff H. I.; Choi I.; Nayyar A.; Lee Y. S.; Cherian J.; Niyomrattanakit P.; Dick T.; Manjunatha U. H.; Barry C. E.; Spraggon G.; Geierstanger B. H. Structure of Ddn, the Deazaflavin-Dependent Nitroreductase from Mycobacterium tuberculosis Involved in Bioreductive Activation of PA-824. Structure 2012, 20, 101–112. 10.1016/j.str.2011.11.001. PubMed DOI PMC
Makarov V.; Manina G.; Mikusova K.; Mollmann U.; Ryabova O.; Saint-Joanis B.; Dhar N.; Pasca M. R.; Buroni S.; Lucarelli A. P.; Milano A.; De Rossi E.; Belanova M.; Bobovska A.; Dianiskova P.; Kordulakova J.; Sala C.; Fullam E.; Schneider P.; McKinney J. D.; Brodin P.; Christophe T.; Waddell S.; Butcher P.; Albrethsen J.; Rosenkrands I.; Brosch R.; Nandi V.; Bharath S.; Gaonkar S.; Shandil R. K.; Balasubramanian V.; Balganesh T.; Tyagi S.; Grosset J.; Riccardi G.; Cole S. T. Benzothiazinones Kill Mycobacterium tuberculosis by Blocking Arabinan Synthesis. Science 2009, 324, 801–804. 10.1126/science.1171583. PubMed DOI PMC
Trefzer C.; Skovierova H.; Buroni S.; Bobovska A.; Nenci S.; Molteni E.; Pojer F.; Pasca M. R.; Makarov V.; Cole S. T.; Riccardi G.; Mikusova K.; Johnsson K. Benzothiazinones Are Suicide Inhibitors of Mycobacterial Decaprenylphosphoryl-beta-D-ribofuranose 2’-Oxidase DprE1. J. Am. Chem. Soc. 2012, 134, 912–915. 10.1021/ja211042r. PubMed DOI
Trefzer C.; Rengifo-Gonzalez M.; Hinner M. J.; Schneider P.; Makarov V.; Cole S. T.; Johnsson K. Benzothiazinones: Prodrugs That Covalently Modify the Decaprenylphosphoryl-beta-D-ribose 2’-epimerase DprE1 of Mycobacterium tuberculosis. J. Am. Chem. Soc. 2010, 132, 13663–13665. 10.1021/ja106357w. PubMed DOI
Working Group on New TB Drugs: Clinical Pipeline. https://www.newtbdrugs.org/pipeline/clinical (accessed Oct 5, 2023).
Němeček J.; Sychra P.; Macháček M.; Benková M.; Karabanovich G.; Konečná K.; Kavková V.; Stolaříková J.; Hrabálek A.; Vávrová K.; Soukup O.; Roh J.; Klimešová V. Structure-Activity Relationship Studies on 3,5-Dinitrophenyl Tetrazoles as Antitubercular Agents. Eur. J. Med. Chem. 2017, 130, 419–432. 10.1016/j.ejmech.2017.02.058. PubMed DOI
Karabanovich G.; Němeček J.; Valášková L.; Carazo A.; Konečná K.; Stolaříková J.; Hrabálek A.; Pavliš O.; Pávek P.; Vávrová K.; Roh J.; Klimešová V. S-Substituted 3,5-Dinitrophenyl 1,3,4-Oxadiazole-2-thiols and Tetrazole-5-thiols as Highly Efficient Antitubercular Agents. Eur. J. Med. Chem. 2017, 126, 369–383. 10.1016/j.ejmech.2016.11.041. PubMed DOI
Karabanovich G.; Dušek J.; Savková K.; Pavliš O.; Pávková I.; Korábečný J.; Kučera T.; KočováVlčková H.; Huszár S.; Konyariková Z.; Konečná K.; Jand’ourek O.; Stolaříková J.; Korduláková J.; Vávrová K.; Pávek P.; Klimešová V.; Hrabálek A.; Mikušová K.; Roh J. Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl-β-d-ribofuranose 2′-Oxidase. J. Med. Chem. 2019, 62, 8115–8139. 10.1021/acs.jmedchem.9b00912. PubMed DOI
Karabanovich G.; Roh J.; Smutný T.; Němeček J.; Vicherek P.; Stolaříková J.; Vejsová M.; Dufková I.; Vávrová K.; Pávek P.; Klimešová V.; Hrabálek A. 1-Substituted-5-[(3,5-Dinitrobenzyl)sulfanyl]-1H-Tetrazoles and Their Isosteric Analogs: A New Class of Selective Antitubercular Agents Active against Drug-Susceptible and Multidrug-Resistant Mycobacteria. Eur. J. Med. Chem. 2014, 82, 324–340. 10.1016/j.ejmech.2014.05.069. PubMed DOI
Karabanovich G.; Zemanova J.; Smutny T.; Szekely R.; Sarkan M.; Centarova I.; Vocat A.; Pavkova I.; Conka P.; Nemecek J.; Stolarikova J.; Vejsova M.; Vavrova K.; Klimesova V.; Hrabalek A.; Pavek P.; Cole S. T.; Mikusova K.; Roh J. Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and Thiadiazoles as Selective Antitubercular Agents Active Against Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem. 2016, 59, 2362–2380. 10.1021/acs.jmedchem.5b00608. PubMed DOI
Christophe T.; Jackson M.; Jeon H. K.; Fenistein D.; Contreras-Dominguez M.; Kim J.; Genovesio A.; Carralot J. P.; Ewann F.; Kim E. H.; Lee S. Y.; Kang S.; Seo M. J.; Park E. J.; Skovierova H.; Pham H.; Riccardi G.; Nam J. Y.; Marsollier L.; Kempf M.; Joly-Guillou M. L.; Oh T.; Shin W. K.; No Z.; Nehrbass U.; Brosch R.; Cole S. T.; Brodin P. High Content Screening Identifies Decaprenyl-Phosphoribose 2’ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors. PLoS Pathog. 2009, 5, e100064510.1371/journal.ppat.1000645. PubMed DOI PMC
Karabanovich G.; Roh J.; Soukup O.; Pávková I.; Pasdiorová M.; Tambor V.; Stolaříková J.; Vejsová M.; Vávrová K.; Klimešová V.; Hrabálek A. Tetrazole Regioisomers in the Development of Nitro Group-Containing Antitubercular Agents. Med. Chem. Commun. 2015, 6, 174–181. 10.1039/C4MD00301B. DOI
Nepali K.; Lee H.-Y.; Liou J.-P. Nitro-Group-Containing Drugs. J. Med. Chem. 2019, 62, 2851–2893. 10.1021/acs.jmedchem.8b00147. PubMed DOI
Haver H. L.; Chua A.; Ghode P.; Lakshminarayana S. B.; Singhal A.; Mathema B.; Wintjens R.; Bifani P. Mutations in Genes for the F420 Biosynthetic Pathway and a Nitroreductase Enzyme Are the Primary Resistance Determinants in Spontaneous In Vitro-Selected PA-824-Resistant Mutants of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 5316–5323. 10.1128/AAC.00308-15. PubMed DOI PMC
Kadura S.; King N.; Nakhoul M.; Zhu H.; Theron G.; Köser C. U.; Farhat M. Systematic Review of Mutations Associated with Resistance to the New and Repurposed Mycobacterium tuberculosis Drugs Bedaquiline, Clofazimine, Linezolid, Delamanid and Pretomanid. J. Antimicrob. Chemother. 2020, 75, 2031–2043. 10.1093/jac/dkaa136. PubMed DOI PMC
Fujiwara M.; Kawasaki M.; Hariguchi N.; Liu Y.; Matsumoto M. Mechanisms of Resistance to Delamanid, a Drug for Mycobacterium tuberculosis. Tuberculosis 2018, 108, 186–194. 10.1016/j.tube.2017.12.006. PubMed DOI
Jian Y.; Forbes H. E.; Hulpia F.; Risseeuw M. D. P.; Caljon G.; Munier-Lehmann H.; Boshoff H. I. M.; Van Calenbergh S. 2-((3,5-Dinitrobenzyl)thio)quinazolinones: Potent Antimycobacterial Agents Activated by Deazaflavin (F420)-Dependent Nitroreductase (Ddn). J. Med. Chem. 2021, 64, 440–457. 10.1021/acs.jmedchem.0c01374. PubMed DOI PMC
Yoon N. M.; Pak C. S.; Brown H. C.; Krishnamurthy S.; Stocky T. P. Selective Reductions.19. Rapid Reaction of Carboxylic-Acids with Borane-Tetrahydrofuran - Remarkably Convenient Procedure for Selective Conversion of Carboxylic-Acids to Corresponding Alcohols in Presence of Other Functional Groups. J. Org. Chem. 1973, 38, 2786–2792. 10.1021/jo00956a011. DOI
Rajesh K.; Somasundaram M.; Saiganesh R.; Balasubramanian K. K. Bromination of Deactivated Aromatics: A Simple and Efficient Method. J. Org. Chem. 2007, 72, 5867–5869. 10.1021/jo070477u. PubMed DOI
Weissman S. A.; Zewge D.; Chen C. Ligand-Free Palladium-Catalyzed Cyanation of Aryl Halides. J. Org. Chem. 2005, 70, 1508–1510. 10.1021/jo0481250. PubMed DOI
Nagano H.; Hamana M.; Nawata Y. The Mechanism of the Reaction of Nicotinic Acid 1 Oxide with Acetic Anhydride. Chem. Pharm. Bull. 1987, 35, 4068–4077. 10.1248/cpb.35.4068. DOI
Ashimori A.; Ono T.; Uchida T.; Ohtaki Y.; Fukaya C.; Watanabe M.; Yokoyama K. Novel 1,4-Dihydropyridine Calcium Antagonists. I. Synthesis and Hypotensive Activity of 4-(Substituted pyridyl)-1,4-dihydropyridine Derivatives. Chem. Pharm. Bull. 1990, 38, 2446–2458. 10.1248/cpb.38.2446. PubMed DOI
Gribble A. D.; Dolle R. E.; Shaw A.; McNair D.; Novelli R.; Novelli C. E.; Slingsby B. P.; Shah V. P.; Tew D.; Saxty B. A.; Allen M.; Groot P. H.; Pearce N.; Yates J. ATP-Citrate Lyase as a Target for Hypolipidemic Intervention. Design and Synthesis of 2-Substituted Butanedioic Acids as Novel, Potent Inhibitors of the Enzyme. J. Med. Chem. 1996, 39, 3569–3584. 10.1021/jm960167w. PubMed DOI
Jones P. R.; Rothenberger S. D. Nucleophilic Aromatic Substitution with Elimination in a Dinitrosalicylic Lactone or Ester via Meisenheimer Intermediates. J. Org. Chem. 1986, 51, 3016–3023. 10.1021/jo00365a031. DOI
Rakesh; Bruhn D. F.; Scherman M. S.; Woolhiser L. K.; Madhura D. B.; Maddox M. M.; Singh A. P.; Lee R. B.; Hurdle J. G.; McNeil M. R.; Lenaerts A. J.; Meibohm B.; Lee R. E. Pentacyclic Nitrofurans with In Vivo Efficacy and Activity against Nonreplicating Mycobacterium tuberculosis. PLoS One 2014, 9, e8790910.1371/journal.pone.0087909. PubMed DOI PMC
Rakesh; Bruhn D.; Madhura D. B.; Maddox M.; Lee R. B.; Trivedi A.; Yang L.; Scherman M. S.; Gilliland J. C.; Gruppo V.; McNeil M. R.; Lenaerts A. J.; Meibohm B.; Lee R. E. Antitubercular Nitrofuran Isoxazolines with Improved Pharmacokinetic Properties. Bioorg. Med. Chem. 2012, 20, 6063–6072. 10.1016/j.bmc.2012.08.023. PubMed DOI PMC
Roh J.; Karabanovich G.; Vlckova H.; Carazo A.; Nemecek J.; Sychra P.; Valaskova L.; Pavlis O.; Stolarikova J.; Klimesova V.; Vavrova K.; Pavek P.; Hrabalek A. Development of Water-Soluble 3,5-Dinitrophenyl Tetrazole and Oxadiazole Antitubercular Agents. Bioorg. Med. Chem. 2017, 25, 5468–5476. 10.1016/j.bmc.2017.08.010. PubMed DOI
Makarov V.; Neres J.; Hartkoorn R. C.; Ryabova O. B.; Kazakova E.; Šarkan M.; Huszár S.; Piton J.; Kolly G. S.; Vocat A.; Conroy T. M.; Mikušová K.; Cole S. T. The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 4446–4452. 10.1128/AAC.00778-15. PubMed DOI PMC
Bolger A. M.; Lohse M.; Usadel B. Trimmomatic: a Flexible Trimmer for Illumina Sequence Data. Bioinform. 2014, 30, 2114–2120. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Langmead B.; Salzberg S. L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. 10.1038/nmeth.1923. PubMed DOI PMC
Garrison E.; Marth G.. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 1207.3907v2 [q-bio.GN], 2012, https://arxiv.org/abs/1207.3907.
Koboldt D. C.; Zhang Q.; Larson D. E.; Shen D.; McLellan M. D.; Lin L.; Miller C. A.; Mardis E. R.; Ding L.; Wilson R. K. VarScan 2: Somatic Mutation and Copy Number Alteration Discovery in Cancer by Exome Sequencing. Genome Res. 2012, 22, 568–576. 10.1101/gr.129684.111. PubMed DOI PMC
Pflégr V.; Stolaříková J.; Pál A.; Korduláková J.; Krátký M. Novel Pyrimidine-1,3,4-Oxadiazole Hybrids and Their Precursors as Potential Antimycobacterial Agents. Future Med. Chem. 2023, 15, 1049–1067. 10.4155/fmc-2023-0096. PubMed DOI
Brecik M.; Centárová I.; Mukherjee R.; Kolly G. S.; Huszár S.; Bobovská A.; Kilacsková E.; Mokošová V.; Svetlíková Z.; Šarkan M.; Neres J.; Korduláková J.; Cole S. T.; Mikušová K. DprE1 Is a Vulnerable Tuberculosis Drug Target Due to Its Cell Wall Localization. ACS Chem. Biol. 2015, 10, 1631–1636. 10.1021/acschembio.5b00237. PubMed DOI