Galectin-3-binding protein inhibits extracellular heparan 6-O-endosulfatse Sulf-2
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R01 CA238455
NCI NIH HHS - United States
S10 OD023557
NIH HHS - United States
PubMed
38187586
PubMed Central
PMC10769223
DOI
10.1101/2023.12.20.572603
PII: 2023.12.20.572603
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). In spite of its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the secretome of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP has functional relevance, and may regulate physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.
Zobrazit více v PubMed
Appel MJ, Bertozzi CR. 2015. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem Biol 10:72–84. doi:10.1021/cb500897w PubMed DOI PMC
Benicky J, Sanda M, Panigrahi A, Liu J, Wang Z, Pagadala V, Su G, Goldman R. 2023. A 6-O-endosulfatase activity assay based on synthetic heparan sulfate oligomers. Glycobiology 33:384–395. doi:10.1093/glycob/cwad026 PubMed DOI PMC
Bouwmeester T, Bauch A, Ruffner H, Angrand P-O, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon A-M, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin A-C, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G. 2004. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105. doi:10.1038/ncb1086 PubMed DOI
Bret C, Moreaux J, Schved J-F, Hose D, Klein B. 2011. SULFs in human neoplasia: implication as progression and prognosis factors. Journal of Translational Medicine 9:72. doi:10.1186/1479-5876-9-72 PubMed DOI PMC
Capone E, Iacobelli S, Sala G. 2021. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J Transl Med 19:405. doi:10.1186/s12967-021-03085-w PubMed DOI PMC
Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP. 2001. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293:1663–1666. doi:10.1126/science.293.5535.1663 PubMed DOI
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K. 2003. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 113:435–444. doi:10.1016/s0092-8674(03)00347-7 PubMed DOI
Dufrusine B, Capone E, Ponziani S, Lattanzio R, Lanuti P, Giansanti F, De Laurenzi V, Iacobelli S, Ippoliti R, Mangiola A, Trevisi G, Sala G. 2023. Extracellular LGALS3BP: a potential disease marker and actionable target for antibody-drug conjugate therapy in glioblastoma. Mol Oncol 17:1460–1473. doi:10.1002/1878-0261.13453 PubMed DOI PMC
El Masri R, Seffouh A, Roelants C, Seffouh I, Gout E, Pérard J, Dalonneau F, Nishitsuji K, Noborn F, Nikpour M, Larson G, Crétinon Y, Friedel-Arboleas M, Uchimura K, Daniel R, Lortat-Jacob H, Filhol O, Vivès RR. 2022. Extracellular endosulfatase Sulf-2 harbors a chondroitin/dermatan sulfate chain that modulates its enzyme activity. Cell Rep 38:110516. doi:10.1016/j.celrep.2022.110516 PubMed DOI
Elegheert J, Behiels E, Bishop B, Scott S, Woolley RE, Griffiths SC, Byrne EFX, Chang VT, Stuart DI, Jones EY, Siebold C, Aricescu AR. 2018. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat Protoc 13:2991–3017. doi:10.1038/s41596-018-0075-9 PubMed DOI PMC
Feyzi E, Lustig F, Fager G, Spillmann D, Lindahl U, Salmivirta M. 1997. Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J Biol Chem 272:5518–5524. doi:10.1074/jbc.272.9.5518 PubMed DOI
Flowers SA, Zhou X, Wu J, Wang Y, Makambi K, Kallakury BV, Singer MS, Rosen SD, Davidson B, Goldman R. 2016. Expression of the extracellular sulfatase SULF2 is associated with squamous cell carcinoma of the head and neck. Oncotarget 7:43177–43187. doi:10.18632/oncotarget.9506 PubMed DOI PMC
Haenig C, Atias N, Taylor AK, Mazza A, Schaefer MH, Russ J, Riechers S-P, Jain S, Coughlin M, Fontaine J-F, Freibaum BD, Brusendorf L, Zenkner M, Porras P, Stroedicke M, Schnoegl S, Arnsburg K, Boeddrich A, Pigazzini L, Heutink P, Taylor JP, Kirstein J, Andrade-Navarro MA, Sharan R, Wanker EE. 2020. Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains. Cell Rep 32:108050. doi:10.1016/j.celrep.2020.108050 PubMed DOI
Hanson SR, Best MD, Wong C-H. 2004. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 43:5736–5763. doi:10.1002/anie.200300632 PubMed DOI
Hubel P, Urban C, Bergant V, Schneider WM, Knauer B, Stukalov A, Scaturro P, Mann A, Brunotte L, Hoffmann HH, Schoggins JW, Schwemmle M, Mann M, Rice CM, Pichlmair A. 2019. A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat Immunol 20:493–502. doi:10.1038/s41590-019-0323-3 PubMed DOI
Hur K, Han T-S, Jung E-J, Yu J, Lee H-J, Kim WH, Goel A, Yang H-K. 2012. Up-regulated expression of sulfatases (SULF1 and SULF2) as prognostic and metastasis predictive markers in human gastric cancer. J Pathol 228:88–98. doi:10.1002/path.4055 PubMed DOI
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW. 2017. Architecture of the human interactome defines protein communities and disease networks. Nature 545:505–509. doi:10.1038/nature22366 PubMed DOI PMC
Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. 2000. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6:1389–1393. PubMed
Lai J-P, Sandhu DS, Yu C, Han T, Moser CD, Jackson KK, Guerrero RB, Aderca I, Isomoto H, Garrity-Park MM, Zou H, Shire AM, Nagorney DM, Sanderson SO, Adjei AA, Lee J-S, Thorgeirsson SS, Roberts LR. 2008. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 47:1211–1222. doi:10.1002/hep.22202 PubMed DOI PMC
Lee H-Y, Yeh B-W, Chan T-C, Yang K-F, Li W-M, Huang C-N, Ke H-L, Li C-C, Yeh H-C, Liang P-I, Shiue Y-L, Wu W-J, Li C-F. 2017. Sulfatase-1 overexpression indicates poor prognosis in urothelial carcinoma of the urinary bladder and upper tract. Oncotarget 8:47216–47229. doi:10.18632/oncotarget.17590 PubMed DOI PMC
Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT. 1994. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem 269:11216–11223. PubMed
Mahalingam Y, Gallagher JT, Couchman JR. 2007. Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties. J Biol Chem 282:3221–3230. doi:10.1074/jbc.M604938200 PubMed DOI
Moriconi C, Palmieri V, Di Santo R, Tornillo G, Papi M, Pilkington G, De Spirito M, Gumbleton M. 2017. INSIDIA: A FIJI Macro Delivering High-Throughput and High-Content Spheroid Invasion Analysis. Biotechnol J 12. doi:10.1002/biot.201700140 PubMed DOI
Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD. 2002. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277:49175–49185. doi:10.1074/jbc.M205131200 PubMed DOI PMC
Mukherjee P, Zhou X, Benicky J, Panigrahi A, Aljuhani R, Liu J, Ailles L, Pomin VH, Wang Z, Goldman R. 2023. Heparan-6-O-Endosulfatase 2 Promotes Invasiveness of Head and Neck Squamous Carcinoma Cell Lines in Co-Cultures with Cancer-Associated Fibroblasts. Cancers (Basel) 15. doi:10.3390/cancers15215168 PubMed DOI PMC
Nielsen CT, Østergaard O, Rasmussen NS, Jacobsen S, Heegaard NHH. 2017. A review of studies of the proteomes of circulating microparticles: key roles for galectin-3-binding protein-expressing microparticles in vascular diseases and systemic lupus erythematosus. Clin Proteomics 14:11. doi:10.1186/s12014-017-9146-0 PubMed DOI PMC
Ono K, Hattori H, Takeshita S, Kurita A, Ishihara M. 1999. Structural features in heparin that interact with VEGF165 and modulate its biological activity. Glycobiology 9:705–711. doi:10.1093/glycob/9.7.705 PubMed DOI
Perini G, Rosa E, Friggeri G, Di Pietro L, Barba M, Parolini O, Ciasca G, Moriconi C, Papi M, De Spirito M, Palmieri V. 2022. INSIDIA 2.0 High-Throughput Analysis of 3D Cancer Models: Multiparametric Quantification of Graphene Quantum Dots Photothermal Therapy for Glioblastoma and Pancreatic Cancer. Int J Mol Sci 23:3217. doi:10.3390/ijms23063217 PubMed DOI PMC
Phillips JJ, Huillard E, Robinson AE, Ward A, Lum DH, Polley M-Y, Rosen SD, Rowitch DH, Werb Z. 2012. Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. J Clin Invest 122:911–922. doi:10.1172/JCI58215 PubMed DOI PMC
Pye DA, Vivès RR, Hyde P, Gallagher JT. 2000. Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. Glycobiology 10:1183–1192. doi:10.1093/glycob/10.11.1183 PubMed DOI
Rosen SD, Lemjabbar-Alaoui H. 2010. Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin Ther Targets 14:935–949. doi:10.1517/14728222.2010.504718 PubMed DOI PMC
Seffouh A, El Masri R, Makshakova O, Gout E, Hassoun ZEO, Andrieu J-P, Lortat-Jacob H, Vivès RR. 2019. Expression and purification of recombinant extracellular sulfatase HSulf-2 allows deciphering of enzyme sub-domain coordinated role for the binding and 6-O-desulfation of heparan sulfate. Cell Mol Life Sci 76:1807–1819. doi:10.1007/s00018-019-03027-2 PubMed DOI PMC
Siegel RJ, Singh AK, Panipinto PM, Shaikh FS, Vinh J, Han SU, Kenney HM, Schwarz EM, Crowson CS, Khuder SA, Khuder BS, Fox DA, Ahmed S. 2022. Extracellular sulfatase-2 is overexpressed in rheumatoid arthritis and mediates the TNF-α-induced inflammatory activation of synovial fibroblasts. Cell Mol Immunol 19:1185–1195. doi:10.1038/s41423-022-00913-x PubMed DOI PMC
Singer MS, Phillips JJ, Lemjabbar-Alaoui H, Wang YQ, Wu J, Goldman R, Rosen SD. 2015. SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis. Clin Chim Acta 0:72–78. doi:10.1016/j.cca.2014.10.038 PubMed DOI PMC
Tang R, Rosen SD. 2009. Functional consequences of the subdomain organization of the sulfs. J Biol Chem 284:21505–21514. doi:10.1074/jbc.M109.028472 PubMed DOI PMC
Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, Werb Z, Rosen SD. 2006. HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin- bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:2. doi:10.1186/1471-2091-7-2 PubMed DOI PMC
Vivès RR, Seffouh A, Lortat-Jacob H. 2014. Post-Synthetic Regulation of HS Structure: The Yin and Yang of the Sulfs in Cancer. Front Oncol 3:331. doi:10.3389/fonc.2013.00331 PubMed DOI PMC
Yang Y, Ahn J, Edwards NJ, Benicky J, Rozeboom AM, Davidson B, Karamboulas C, Nixon KCJ, Ailles L, Goldman R. 2022. Extracellular Heparan 6-O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies. Cancers (Basel) 14:5553. doi:10.3390/cancers14225553 PubMed DOI PMC
Yang Y, Ahn J, Raghunathan R, Kallakury BV, Davidson B, Kennedy ZB, Zaia J, Goldman R. 2021. Expression of the Extracellular Sulfatase SULF2 Affects Survival of Head and Neck Squamous Cell Carcinoma Patients. Front Oncol 10:582827. doi:10.3389/fonc.2020.582827 PubMed DOI PMC
Zhang S, Condac E, Qiu H, Jiang J, Gutierrez-Sanchez G, Bergmann C, Handel T, Wang L. 2012. Heparin-induced leukocytosis requires 6-O-sulfation and is caused by blockade of selectin- and CXCL12 protein-mediated leukocyte trafficking in mice. J Biol Chem 287:5542–5553. doi:10.1074/jbc.M111.314716 PubMed DOI PMC
Zhu C, He L, Zhou X, Nie X, Gu Y. 2016. Sulfatase 2 promotes breast cancer progression through regulating some tumor-related factors. Oncology Reports 35:1318–1328. doi:10.3892/or.2015.4525 PubMed DOI PMC