• This record comes from PubMed

Cereal β-d-Glucans in Food Processing Applications and Nanotechnology Research

. 2024 Feb 04 ; 13 (3) : . [epub] 20240204

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
APVV-18-0154 Slovak Research and Development Agency
MZE-RO0423 Ministry of Agriculture of the Czech Republic, institutional support

Cereal (1,3)(1,4)-β-d-glucans, known as β-d-glucans, are cell wall polysaccharides observed in selected plants of grasses, and oats and barley are their good natural sources. Thanks to their physicochemical properties β-d-glucans have therapeutic and nutritional potential and a specific place for their functional characteristics in diverse food formulations. They can function as thickeners, stabilizers, emulsifiers, and textural and gelation agents in beverages, bakery, meat, and extruded products. The objective of this review is to describe the primary procedures for the production of β-d-glucans from cereal grains, to define the processing factors influencing their properties, and to summarize their current use in the production of novel cereal-based foods. Additionally, the study delves into the utilization of β-d-glucans in the rapidly evolving field of nanotechnology, exploring potential applications within this technological realm.

See more in PubMed

Chiozzi V., Eliopoulos C., Markou G., Arapoglou D., Agriopoulou S., El Enshasy H.A., Varzakas T. Biotechnological Addition of β-Glucans from Cereals, Mushrooms and Yeasts in Foods and Animal Feed. Processes. 2021;9:1889. doi: 10.3390/pr9111889. DOI

Li X., Cheung P.C.K. Application of Natural β-Glucans as Biocompatible Functional Nanomaterials. Food Sci. Hum. Wellness. 2019;8:315–319. doi: 10.1016/j.fshw.2019.11.005. DOI

Tosh S.M., Brummer Y., Wood P.J., Wang Q., Weisz J. Evaluation of Structure in the Formation of Gels by Structurally Diverse (1→3)(1→4)-β-d-Glucans from Four Cereal and One Lichen Species. Carbohydr. Polym. 2004;57:249–259. doi: 10.1016/j.carbpol.2004.05.009. DOI

Cui W., Wood P.J. Relationships between Structural Features, Molecular Weight, and Rheological Properties of Cereal β-d-Glucans. In: Nishinari K., editor. Hydrocoll. Elsevier Science; Amsterdam, The Netherlands: 2000. pp. 159–168. DOI

Izydorczyk M.S., Macri L.J., MacGregor A.W. Structure and Physicochemical Properties of Barley Non-Starch Polysaccharides—I. Water-Extractable β-Glucans and Arabinoxylans. Carbohydr. Polym. 1998;35:249–258. doi: 10.1016/S0144-8617(97)00137-9. DOI

Henrion M., Francey C., Lê K.-A., Lamothe L. Cereal B-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients. 2019;11:1729. doi: 10.3390/nu11081729. PubMed DOI PMC

Kagimura F.Y., da Cunha M.A.A., Theis T.V., Malfatti C.R.M., Dekker R.F.H., Barbosa A.M., Teixeira S.D., Salomé K. Carboxymethylation of (1→6)-β-Glucan (Lasiodiplodan): Preparation, Characterization and Antioxidant Evaluation. Carbohydr. Polym. 2015;127:390–399. doi: 10.1016/j.carbpol.2015.03.045. PubMed DOI

Skendi A., Biliaderis C.G., Lazaridou A., Izydorczyk M.S. Structure and Rheological Properties of Water Soluble β-Glucans from Oat Cultivars of Avena sativa and Avena bysantina. J. Cereal Sci. 2003;38:15–31. doi: 10.1016/S0733-5210(02)00137-6. DOI

Mao H., Xu M., Ji J., Zhou M., Li H., Wen Y., Wang J., Sun B. The Utilization of Oat for the Production of Wholegrain Foods: Processing Technology and Products. Food Front. 2022;3:28–45. doi: 10.1002/fft2.120. DOI

Kaur R., Sharma M. Cereal Polysaccharides as Sources of Functional Ingredient for Reformulation of Meat Products: A Review. J. Funct. Foods. 2019;62:103527. doi: 10.1016/j.jff.2019.103527. DOI

Lukinac J., Jukić M. Barley in the Production of Cereal-Based Products. Plants. 2022;11:3519. doi: 10.3390/plants11243519. PubMed DOI PMC

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the Substantiation of Health Claims Related to Beta-Glucans from Oats and Barley and Maintenance of Normal Blood LDL-Cholesterol Concentrations (ID 1236, 1299), Increase in Satiety Leading to a Reduction in Energy Intake (ID 851, 852), Reduction of Post-Prandial Glycaemic Responses (ID 821, 824), and “Digestive Function” (ID 850) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011;9:2207. doi: 10.2903/j.efsa.2011.2207. DOI

Wolever T.M.S., Rahn M., Dioum E.H., Spruill S.E., Ezatagha A., Campbell J.E., Jenkins A.L., Chu Y.F. An Oat β-Glucan Beverage Reduces LDL Cholesterol and Cardiovascular Disease Risk in Men and Women with Borderline High Cholesterol: A Double-Blind, Randomized, Controlled Clinical Trial. J. Nutr. 2021;151:2655–2666. doi: 10.1093/jn/nxab154. PubMed DOI

Sandford P.A., Baird J. 7—Industrial Utilization of Polysaccharides. In: Aspinall G.O., editor. The Polysaccharides. Academic Press; Cambridge, MA, USA: 1983. pp. 411–490. DOI

Ahmad A., Kaleem M. Chapter 11—β-Glucan as a Food Ingredient. In: Grumezescu A.M., Holban A.M., editors. Biopolymers for Food Design. Academic Press; Cambridge, MA, USA: 2018. pp. 351–381. DOI

Nakashima A., Yamada K., Iwata O., Sugimoto R., Atsuji K., Ogawa T., Ishibashi-Ohgo N., Suzuki K. β-Glucan in Foods and Its Physiological Functions. J. Nutr. Sci. Vitaminol. 2018;64:8–17. doi: 10.3177/jnsv.64.8. PubMed DOI

Yang F., Cheung P.C. Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. J. Fungi. 2023;9:475. doi: 10.3390/jof9040475. PubMed DOI PMC

Venkatachalam G., Arumugam S., Doble M. Industrial Production and Applications of α/β Linear and Branched Glucans. Indian Chem. Eng. 2021;63:533–547. doi: 10.1080/00194506.2020.1798820. DOI

Zhu F., Du B., Xu B.A. Critical Review on Production and Industrial Applications of Beta-Glucans. Food Hydrocoll. 2016;52:275–288. doi: 10.1016/j.foodhyd.2015.07.003. DOI

Brennan C.S., Cleary L.J. The Potential Use of Cereal (1→3,1→4)-β-d-Glucans as Functional Food Ingredients. J. Cereal Sci. 2005;42:1–13. doi: 10.1016/j.jcs.2005.01.002. DOI

Sushytskyi L., Synytsya A., Čopíková J., Lukáč P., Rajsiglová L., Tenti P., Vannucci L.E. Perspectives in the Application of High, Medium, and Low Molecular Weight Oat β-d-Glucans in Dietary Nutrition and Food Technology—A Short Overview. Foods. 2023;12:1121. doi: 10.3390/foods12061121. PubMed DOI PMC

Wang Q., Sheng X., Shi A., Hu H., Yang Y., Liu L., Fei L., Liu H. β-Glucans: Relationships between Modification, Conformation and Functional Activities. Molecules. 2017;22:257. doi: 10.3390/molecules22020257. PubMed DOI PMC

Sibakov J., Abecassis J., Barron C., Poutanen K. Electrostatic Separation Combined with Ultra-Fine Grinding to Produce β-Glucan Enriched Ingredients from Oat Bran. IFSET. 2014;26:445–455. doi: 10.1016/j.ifset.2014.10.004. DOI

Daou C., Zhang H. Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases. Compr. Rev. Food Sci. Food Saf. 2012;11:355–365. doi: 10.1111/j.1541-4337.2012.00189.x. DOI

Benito-Román Ó., Alonso E., Gairola K., Cocero M.J. Fixed-Bed Extraction of β-Glucan from Cereals by Means of Pressurized Hot Water. J. Supercrit. Fluids. 2013;82:122–128. doi: 10.1016/j.supflu.2013.07.003. DOI

Izydorczyk M.S., Dexter J.E. Barley β-Glucans and Arabinoxylans: Molecular Structure, Physicochemical Properties, and Uses in Food Products—A Review. Food Res. Int. 2008;41:850–868. doi: 10.1016/j.foodres.2008.04.001. DOI

Liu K. Fractionation of Oats into Products Enriched with Protein, Beta-Glucan, Starch, or Other Carbohydrates. J. Cereal Sci. 2014;60:317–322. doi: 10.1016/j.jcs.2014.06.002. DOI

Gangopadhyay N., Hossain M.B., Rai D.K., Brunton N.P. Optimisation of Yield and Molecular Weight of β-Glucan from Barley Flour Using Response Surface Methodology. J. Cereal Sci. 2015;62:38–44. doi: 10.1016/j.jcs.2014.10.007. DOI

Limberger V.M., de Francisco A., Borges M.R., Oro T., Ogliari P.J., Scheuer P.M., Noronha C.M. Extração de β-Glucanas de Cevada e Caracterização Parcial Do Amido Residual. Ciênc. Rural. 2011;41:2217–2223. doi: 10.1590/S0103-84782011001200028. DOI

Kao P.-F., Wang S.-H., Hung W.-T., Liao Y.-H., Lin C.-M., Yang W.-B. Structural Characterization and Antioxidative Activity of Low-Molecular-Weights Beta-1,3-Glucan from the Residue of Extracted Ganoderma lucidum Fruiting Bodies. J. BioMed Biotech. 2011;2012:673764. doi: 10.1155/2012/673764. PubMed DOI PMC

Du B., Zhu F., Xu B. Physicochemical and Antioxidant Properties of Dietary Fibers from Qingke (Hull-Less Barley) Flour as Affected by Ultrafine Grinding. Bioact. Carbohydr. Diet. Fibre. 2014;4:170–175. doi: 10.1016/j.bcdf.2014.09.003. DOI

Ookushi Y., Sakamoto M., Azuma J. Optimization of Microwave-Assisted Extraction of Polysaccharides from the Fruiting Body of Mushrooms. J. Appl. Glycosci. 2006;53:267–272. doi: 10.5458/jag.53.267. DOI

Park H., Ka K.-H., Ryu S.-R. Enhancement of β-Glucan Content in the Cultivation of Cauliflower Mushroom (Sparassis latifolia) by Elicitation. Mycobiology. 2014;42:41–45. doi: 10.5941/MYCO.2014.42.1.41. PubMed DOI PMC

Wood P., Paton D. Extraction of High-Viscosity Gums from Oats. Cereal Chem. 1978;55:1038–1049.

Routray W., Orsat V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioproc. Technol. 2012;5:409–424. doi: 10.1007/s11947-011-0573-z. DOI

Lazaridou A., Biliaderis C.G. Molecular Aspects of Cereal β-Glucan Functionality: Physical Properties, Technological Applications and Physiological Effects. J. Cereal Sci. 2007;46:101–118. doi: 10.1016/j.jcs.2007.05.003. DOI

Comin L.M., Temelli F., Saldaña M.D.A. Barley Beta-Glucan Aerogels via Supercritical CO2 Drying. Food Res. Int. 2012;48:442–448. doi: 10.1016/j.foodres.2012.05.002. DOI

Yoo H.-U., Ko M.-J., Chung M.-S. Hydrolysis of Beta-Glucan in Oat Flour during Subcritical-Water Extraction. Food Chem. 2020;308:125670. doi: 10.1016/j.foodchem.2019.125670. PubMed DOI

Ahluwalia B., Ellis E.E. A Rapid and Simple Method for the determination of starch and β-glucan in barley and malt. J. Inst. Brew. 1984;90:254–259. doi: 10.1002/j.2050-0416.1984.tb04267.x. DOI

Vasanthan T., Temelli F. Grain Fractionation Technologies for Cereal Beta-Glucan Concentration. Food Res. Int. 2008;41:876–881. doi: 10.1016/j.foodres.2008.07.022. DOI

Westerlund E., Andersson R., Åman P. Isolation and Chemical Characterization of Water-Soluble Mixed-Linked β-Glucans and Arabinoxylans in Oat Milling Fractions. Carbohydr. Polym. 1993;20:115–123. doi: 10.1016/0144-8617(93)90086-J. DOI

Wood P., Weisz J., Blackwell B. Molecular Characterization of Cereal β-d-Glucans. Structural Analysis of Oat β-D-Glucan and Rapid Structural Evaluation of β-d-Glucans from Different Sources by High-Performance Liquid Chromatography of Oligosaccharides Released by Lichenase. Cereal Chem. 1991;68:31–39.

Irakli M., Biliaderis C.G., Izydorczyk M.S., Papadoyannis I.N. Isolation, Structural Features and Rheological Properties of Water-Extractable β-Glucans from Different Greek Barley Cultivars. J. Sci. Food Agric. 2004;84:1170–1178. doi: 10.1002/jsfa.1787. DOI

Ahmad A., Anjum F.M., Zahoor T., Nawaz H., Ahmed Z. Extraction and Characterization of Beta-D-Glucan from Oat for Industrial Utilization. Int. J. Biol. Macromol. 2010;46:304–309. doi: 10.1016/j.ijbiomac.2010.01.002. PubMed DOI

Babu L.R. Green Extraction Techniques, Structural Analysis and Antioxidant Activites of B-Glucan Present in Oats. Int. J. Sci. Res. 2015;4:125–135.

Benito-Román O., Alonso E., Lucas S. Optimization of the β-Glucan Extraction Conditions from Different Waxy Barley Cultivars. J. Cereal Sci. 2011;53:271–276. doi: 10.1016/j.jcs.2011.01.003. DOI

Harris P.J., Fincher G.B. Chapter 4.6—Distribution, Fine Structure and Function of (1,3;1,4)-β-Glucans in the Grasses and Other Taxa. In: Bacic A., Fincher G.B., Stone B.A., editors. Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides. Academic Press; San Diego, CA, USA: 2009. pp. 621–654. DOI

Zheng G.H., Rossnagel B.G., Tyler R.T., Bhatty R.S. Distribution of β-Glucan in the Grain of Hull-Less Barley. Cereal Chem. 2000;77:140–144. doi: 10.1094/CCHEM.2000.77.2.140. DOI

Wood P.J., Weisz J., Fedec P., Burrows V.D. Large-Scale Preparation and Properties of Oat Fractions Enriched in (1-3)(1-4)-β-D-Glucan. Cereal Chem. 1989;66:97–103.

Zheng X., Li L., Wang X. Molecular Characterization of Arabinoxylans from Hull-Less Barley Milling Fractions. Molecules. 2011;16:2743–2753. doi: 10.3390/molecules16042743. PubMed DOI PMC

De Brier N., Hemdane S., Dornez E., Gomand S.V., Delcour J.A., Courtin C.M. Structure, Chemical Composition and Enzymatic Activities of Pearlings and Bran Obtained from Pearled Wheat (Triticum aestivum L.) by Roller Milling. J. Cereal Sci. 2015;62:66–72. doi: 10.1016/j.jcs.2014.12.009. DOI

Izydorczyk M., Cenkowski S., Dexter J. Optimizing the Bioactive Potential of Oat Bran by Processing. Cereal Foods World. 2014;59:127–136. doi: 10.1094/CFW-59-3-0127. DOI

Cavallero A., Empilli S., Brighenti F., Stanca A.M. High (1→3,1→4)-β-Glucan Barley Fractions in Bread Making and Their Effects on Human Glycemic Response. J. Cereal Sci. 2002;36:59–66. doi: 10.1006/jcrs.2002.0454. DOI

Holtekjølen A.K., Olsen H.H.R., Færgestad E.M., Uhlen A.K., Knutsen S.H. Variations in Water Absorption Capacity and Baking Performance of Barley Varieties with Different Polysaccharide Content and Composition. LWT-Food Sci. Technol. 2008;41:2085–2091. doi: 10.1016/j.lwt.2007.12.010. DOI

Knuckles B., Hudson C., Chiu M., Sayre R. Effect of β-Glucan Barley Fractions in High-Fiber Bread and Pasta. Cereal Foods World. 1997;42:94–99.

Jacobs M.S., Izydorczyk M.S., Preston K.R., Dexter J.E. Evaluation of Baking Procedures for Incorporation of Barley Roller Milling Fractions Containing High Levels of Dietary Fibre into Bread. J. Sci. Food Agric. 2008;88:558–568. doi: 10.1002/jsfa.3043. DOI

Kinner M., Nitschko S., Sommeregger J., Petrasch A., Linsberger-Martin G., Grausgruber H., Berghofer E., Siebenhandl-Ehn S. Naked Barley—Optimized Recipe for Pure Barley Bread with Sufficient Beta-Glucan According to the EFSA Health Claims. J. Cereal Sci. 2011;53:225–230. doi: 10.1016/j.jcs.2011.01.001. PubMed DOI PMC

Andersson R., Fransson G., Tietjen M., Åman P. Content and Molecular-Weight Distribution of Dietary Fiber Components in Whole-Grain Rye Flour and Bread. J. Agric. Food Chem. 2009;57:2004–2008. doi: 10.1021/jf801280f. PubMed DOI

Lu J., Shan L., Xie Y., Min F., Gao J., Guo L., Ren C., Yuan J., Gilissen L., Chen H. Effect of Fermentation on Content, Molecule Weight Distribution and Viscosity of β-Glucans in Oat Sourdough. Int. J. Food Sci. Technol. 2019;54:62–67. doi: 10.1111/ijfs.13902. DOI

Williams J.G. Polymeric Materials Encyclopedia Edited by Joseph C. Salamone. CRC Press:  Boca Raton, FL. 1996. ISBN 0-8493-2470-X. J. Am. Chem. Soc. 1998;120:6848–6849. doi: 10.1021/ja985901a. PubMed DOI

Maina N.H., Rieder A., De Bondt Y., Mäkelä-Salmi N., Sahlstrøm S., Mattila O., Lamothe L.M., Nyström L., Courtin C.M., Katina K., et al. Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber. Foods. 2021;10:2566. doi: 10.3390/foods10112566. PubMed DOI PMC

Xie Y., Liu Q., Liu H., Fan Z., Shi J., Liu X. Effect of Various Thermal Processing on the Structural and in Vitro Prebiotic Characteristics of β-Glucan from Hulless Barley. Food Hydrocol. 2023;142:108818. doi: 10.1016/j.foodhyd.2023.108818. DOI

Andersson A.A.M., Armö E., Grangeon E., Fredriksson H., Andersson R., Åman P. Molecular Weight and Structure Units of (1→3, 1→4)-β-Glucans in Dough and Bread Made from Hull-Less Barley Milling Fractions. J. Cereal Sci. 2004;40:195–204. doi: 10.1016/j.jcs.2004.07.001. DOI

Åman P., Rimsten L., Andersson R. Molecular Weight Distribution of β-Glucan in Oat-Based Foods. Cereal Chem. 2004;81:356–360. doi: 10.1094/CCHEM.2004.81.3.356. DOI

Wang C.-Y., Wu S.-J., Shyu Y.-T. Antioxidant Properties of Certain Cereals as Affected by Food-Grade Bacteria Fermentation. J. Biosci. Bioeng. 2014;117:449–456. doi: 10.1016/j.jbiosc.2013.10.002. PubMed DOI

Andersson R., Åman P. Advanced Dietary Fibre Technology. John Wiley & Sons; Hoboken, NJ, USA: 2000. Cereal Arabinoxylan: Occurrence, Structure and Properties; pp. 299–314. DOI

Rieder A., Holtekjølen A.K., Sahlstrøm S., Moldestad A. Effect of Barley and Oat Flour Types and Sourdoughs on Dough Rheology and Bread Quality of Composite Wheat Bread. J. Cereal Sci. 2012;55:44–52. doi: 10.1016/j.jcs.2011.10.003. DOI

Comino P., Collins H., Lahnstein J., Gidley M.J. Effects of Diverse Food Processing Conditions on the Structure and Solubility of Wheat, Barley and Rye Endosperm Dietary Fibre. J. Food Eng. 2016;169:228–237. doi: 10.1016/j.jfoodeng.2015.08.037. DOI

Marklinder I., Johansson L., Haglund Å., Nagel-Held B., Seibel W. Effects of Flour from Different Barley Varieties on Barley Sour Dough Bread. Food Qual. 1996;7:275–284. doi: 10.1016/S0950-3293(96)00033-X. DOI

Lambo A.M., Öste R., Nyman M.E.G.-L. Dietary Fibre in Fermented Oat and Barley β-Glucan Rich Concentrates. Food Chem. 2005;89:283–293. doi: 10.1016/j.foodchem.2004.02.035. DOI

Skendi A., Papageorgiou M., Biliaderis C.G. Effect of Barley β-Glucan Molecular Size and Level on Wheat Dough Rheological Properties. J. Food Eng. 2009;91:594–601. doi: 10.1016/j.jfoodeng.2008.10.009. DOI

Peressini D., Pin M., Sensidoni A. Rheology and Breadmaking Performance of Rice-Buckwheat Batters Supplemented with Hydrocolloids. Food Hydrocol. 2011;25:340–349. doi: 10.1016/j.foodhyd.2010.06.012. DOI

Tiwari U., Cummins E., Sullivan P., Flaherty J.O., Brunton N., Gallagher E. Probabilistic Methodology for Assessing Changes in the Level and Molecular Weight of Barley β-Glucan during Bread Baking. Food Chem. 2011;124:1567–1576. doi: 10.1016/j.foodchem.2010.07.119. DOI

Rakha A., Åman P., Andersson R. Characterisation of Dietary Fibre Components in Rye Products. Food Chem. 2010;119:859–867. doi: 10.1016/j.foodchem.2009.09.090. DOI

Delcour J.A., Rouau X., Courtin C.M., Poutanen K., Ranieri R. Technologies for Enhanced Exploitation of the Health-Promoting Potential of Cereals. Trends Food Sci. Technol. 2012;25:78–86. doi: 10.1016/j.tifs.2012.01.007. DOI

Djorgbenoo R., Hu J., Hu C., Sang S. Fermented Oats as a Novel Functional Food. Nutrients. 2023;15:3521. doi: 10.3390/nu15163521. PubMed DOI PMC

Elliott H., Woods P., Green B.D., Nugent A.P. Can Sprouting Reduce Phytate and Improve the Nutritional Composition and Nutrient Bioaccessibility in Cereals and Legumes? Nutr. Bull. 2022;47:138–156. doi: 10.1111/nbu.12549. PubMed DOI

Singh A.k., Rehal J., Kaur A., Jyot G. Enhancement of Attributes of Cereals by Germination and Fermentation: A Review. Crit. Rev. Food Sci. Nutr. 2015;55:1575–1589. doi: 10.1080/10408398.2012.706661. PubMed DOI

Wilhelmson A., Oksman-Caldentey K.-M., Laitila A., Suortti T., Kaukovirta-Norja A., Poutanen K. Development of a Germination Process for Producing High β-Glucan, Whole Grain Food Ingredients from Oat. Cereal Chem. 2001;78:715–720. doi: 10.1094/CCHEM.2001.78.6.715. DOI

Žilić S., Basić Z., Hadži-Tašković Šukalović V., Maksimović V., Janković M., Filipović M. Can the Sprouting Process Applied to Wheat Improve the Contents of Vitamins and Phenolic Compounds and Antioxidant Capacity of the Flour? Int. J. Food Sci. Technol. 2014;49:1040–1047. doi: 10.1111/ijfs.12397. DOI

Ikram A., Saeed F., Afzaal M., Imran A., Niaz B., Tufail T., Hussain M., Anjum F.M. Nutritional and End-Use Perspectives of Sprouted Grains: A Comprehensive Review. Food Sci. Nutr. 2021;9:4617–4628. doi: 10.1002/fsn3.2408. PubMed DOI PMC

Luo Y.-W., Xie W.-H., Jin X.-X., Wang Q., He Y.-J. Effects of Germination on Iron, Zinc, Calcium, Manganese, and Copper Availability from Cereals and Legumes. CyTA-J. Food. 2014;12:22–26. doi: 10.1080/19476337.2013.782071. DOI

Baranzelli J., Kringel D.H., Colussi R., Paiva F.F., Aranha B.C., de Miranda M.Z., Zavareze E.d.R., Dias A.R.G. Changes in Enzymatic Activity, Technological Quality and Gamma-Aminobutyric Acid (GABA) Content of Wheat Flour as Affected by Germination. LWT-Food Sci. Technol. 2018;90:483–490. doi: 10.1016/j.lwt.2017.12.070. DOI

Lemmens E., Moroni A.V., Pagand J., Heirbaut P., Ritala A., Karlen Y., Lê K.-A., Van den Broeck H.C., Brouns F.J.P.H., De Brier N., et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Comp. Rev. Food Sci. Food Saf. 2019;18:305–328. doi: 10.1111/1541-4337.12414. PubMed DOI

Edison L.K., Reji S.R., Pradeep N.S. Beta-Glucanase in Breweries. In: Pradeep N.S., Edison L.K., editors. Microbial Beta Glucanases: Molecular Structure, Functions and Applications. Springer Nature; Singapore: 2022. pp. 85–98. DOI

Montemurro M., Pontonio E., Gobbetti M., Rizzello C.G. Investigation of the Nutritional, Functional and Technological Effects of the Sourdough Fermentation of Sprouted Flours. Int. J. Food Microbiol. 2019;302:47–58. doi: 10.1016/j.ijfoodmicro.2018.08.005. PubMed DOI

Hübner F., O’Neil T., Cashman K.D., Arendt E.K. The Influence of Germination Conditions on Beta-Glucan, Dietary Fibre and Phytate during the Germination of Oats and Barley. Eur. Food Res. Technol. 2010;231:27–35. doi: 10.1007/s00217-010-1247-1. DOI

Aparicio-García N., Martínez-Villaluenga C., Frias J., Peñas E. Sprouted Oat as a Potential Gluten-Free Ingredient with Enhanced Nutritional and Bioactive Properties. Food Chem. 2021;338:127972. doi: 10.1016/j.foodchem.2020.127972. PubMed DOI

Islam M.Z., An H.-G., Kang S.-J., Lee Y.-T. Physicochemical and Bioactive Properties of a High β-Glucan Barley Variety ‘Betaone’ Affected by Germination Processing. Int. J. Biol. Macromol. 2021;177:129–134. doi: 10.1016/j.ijbiomac.2021.02.053. PubMed DOI

Sozer N., Poutanen K. Fibre in Extruded Products. In: Delcour J.A., Poutanen K., editors. Fibre-Rich and Wholegrain Foods: Improving Quality. Woodhead Publishing; Sawston, UK: 2013. pp. 256–272. DOI

Sharma P., Gujral H.S. Extrusion of Hulled Barley Affecting β-Glucan and Properties of Extrudates. Food Biop. Technol. 2013;6:1374–1389. doi: 10.1007/s11947-011-0777-2. DOI

Tosh S.M., Brummer Y., Miller S.S., Regand A., Defelice C., Duss R., Wolever T.M.S., Wood P.J. Processing Affects the Physicochemical Properties of β-Glucan in Oat Bran Cereal. J. Agric. Food Chem. 2010;58:7723–7730. doi: 10.1021/jf904553u. PubMed DOI

Kaur R., Sharma M., Ji D., Xu M., Agyei D. Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers. 2020;8:1. doi: 10.3390/fib8010001. DOI

Gajula H., Alavi S., Adhikari K., Herald T. Precooked Bran-Enriched Wheat Flour Using Extrusion: Dietary Fiber Profile and Sensory Characteristics. J. Food Sci. 2008;73:S173–S179. doi: 10.1111/j.1750-3841.2008.00715.x. PubMed DOI

Sobota A., Sykut-Domańska E., Rzedzicki Z. Effect of Extrusion-Cooking Process on the Chemical Composition of Corn-Wheat Extrudates, with Particular Emphasis on Dietary Fibre Fractions. Pol. J. Food Nutr. Sci. 2010;60:251–259.

Vasanthan T., Gaosong J., Yeung J., Li J. Dietary Fiber Profile of Barley Flour as Affected by Extrusion Cooking. Food Chem. 2002;77:35–40. doi: 10.1016/S0308-8146(01)00318-1. DOI

Sozer N., Cicerelli L., Heiniö R.-L., Poutanen K. Effect of Wheat Bran Addition on in Vitro Starch Digestibility, Physico-Mechanical and Sensory Properties of Biscuits. J. Cereal Sci. 2014;60:105–113. doi: 10.1016/j.jcs.2014.01.022. DOI

Gujral H.S., Sharma P., Rachna S. Effect of Sand Roasting on Beta Glucan Extractability, Physicochemical and Antioxidant Properties of Oats. LWT-Food Sci. Technol. 2011;44:2223–2230. doi: 10.1016/j.lwt.2011.06.001. DOI

Schmidt M. Cereal Beta-Glucans: An Underutilized Health Endorsing Food Ingredient. Crit. Rev. Food Sci. Nutr. 2022;62:3281–3300. doi: 10.1080/10408398.2020.1864619. PubMed DOI

Loebnitz N., Grunert K.G. Impact of Self-Health Awareness and Perceived Product Benefits on Purchase Intentions for Hedonic and Utilitarian Foods with Nutrition Claims. Food Qual. 2018;64:221–231. doi: 10.1016/j.foodqual.2017.09.005. DOI

Wood P.J. Cereal β-Glucans in Diet and Health. J. Cereal Sci. 2007;46:230–238. doi: 10.1016/j.jcs.2007.06.012. DOI

Ahmad A., Anjum F.M., Zahoor T., Nawaz H., Dilshad S.M.R. Beta Glucan: A Valuable Functional Ingredient in Foods. Crit. Rev. Food Sci. Nutr. 2012;52:201–212. doi: 10.1080/10408398.2010.499806. PubMed DOI

Zeković D.B., Kwiatkowski S., Vrvić M.M., Jakovljević D., Moran C.A. Natural and Modified (1→3)-β-d-Glucans in Health Promotion and Disease Alleviation. Crit. Rev. Biotech. 2005;25:205–230. doi: 10.1080/07388550500376166. PubMed DOI

Lyly M., Salmenkallio-Marttila M., Suortti T., Autio K., Poutanen K., Lähteenmäki L. Influence of Oat β-Glucan Preparations on the Perception of Mouthfeel and on Rheological Properties in Beverage Prototypes. Cereal Chem. 2003;80:536–541. doi: 10.1094/CCHEM.2003.80.5.536. DOI

Karp S., Wyrwisz J., Kurek M.A. Comparative Analysis of the Physical Properties of o/w Emulsions Stabilised by Cereal β-Glucan and Other Stabilisers. Int. J. Biol. Macromol. 2019;132:236–243. doi: 10.1016/j.ijbiomac.2019.03.212. PubMed DOI

Zhang H., Zhang N., Xiong Z., Wang G., Xia Y., Lai P., Ai L. Structural Characterization and Rheological Properties of β-D-Glucan from Hull-Less Barley (Hordeum vulgare L. Var. nudum Hook. f.). Phytochemistry. 2018;155:155–163. doi: 10.1016/j.phytochem.2018.08.004. PubMed DOI

Chatterjee B., Patel T. Increased Sensory Quality and Consumer Acceptability by Fortification of Chocolate Flavored Milk with Oat Beta Glucan. Int. J. Clin. Biomed. Res. 2016;2:25–28.

Kordialik-Bogacka E., Bogdan P., Diowksz A. Malted and unmalted oats in brewing. J. Inst. Brew. 2014;120:390–398. doi: 10.1002/jib.178. DOI

Zdaniewicz M., Pater A., Knapik A., Duliński R. The effect of different oat (Avena sativa L.) malt contents in a top-fermented beer recipe on the brewing process performance and product quality. J. Cereal Sci. 2021;101:103301. doi: 10.1016/j.jcs.2021.103301. DOI

Angelov A., Gotcheva V., Kuncheva R., Hristozova T. Development of a New Oat-Based Probiotic Drink. Int. J. Food Microbiol. 2006;112:75–80. doi: 10.1016/j.ijfoodmicro.2006.05.015. PubMed DOI

Harasym J., Suchecka D., Gromadzka-Ostrowska J. Effect of Size Reduction by Freeze-Milling on Processing Properties of Beta-Glucan Oat Bran. J. Cereal Sci. 2015;61:119–125. doi: 10.1016/j.jcs.2014.10.010. DOI

Jayachandran M., Chen J., Chung S.S.M., Xu B. A Critical Review on the Impacts of β-Glucans on Gut Microbiota and Human Health. J. Nutr. Biochem. 2018;61:101–110. doi: 10.1016/j.jnutbio.2018.06.010. PubMed DOI

Ortiz de Erive M., He F., Wang T., Chen G. Development of β-Glucan Enriched Wheat Bread Using Soluble Oat Fiber. J. Cereal Sci. 2020;95:103051. doi: 10.1016/j.jcs.2020.103051. DOI

Hager A.-S., Ryan L.A.M., Schwab C., Gänzle M.G., O’Doherty J.V., Arendt E.K. Influence of the Soluble Fibres Inulin and Oat β-Glucan on Quality of Dough and Bread. Eur. Food Res. Technol. 2011;232:405–413. doi: 10.1007/s00217-010-1409-1. DOI

De Paula R., Abdel-Aal E.-S.M., Messia M.C., Rabalski I., Marconi E. Effect of Processing on the Beta-Glucan Physicochemical Properties in Barley and Semolina Pasta. J. Cereal Sci. 2017;75:124–131. doi: 10.1016/j.jcs.2017.03.030. DOI

Messia M.C., Oriente M., Angelicola M., De Arcangelis E., Marconi E. Development of Functional Couscous Enriched in Barley β-Glucans. J. Cereal Sci. 2019;85:137–142. doi: 10.1016/j.jcs.2018.12.007. DOI

Choo C.L., Aziz N.A.A. Effects of Banana Flour and β-Glucan on the Nutritional and Sensory Evaluation of Noodles. Food Chem. 2010;119:34–40. doi: 10.1016/j.foodchem.2009.05.004. DOI

Moza J., Gujral H.S. Influence of Barley Non-Starchy Polysaccharides on Selected Quality Attributes of Sponge Cakes. LWT-Food Sci. Technol. 2017;85:252–261. doi: 10.1016/j.lwt.2017.07.024. DOI

Vitaglione P., Lumaga R.B., Montagnese C., Messia M.C., Marconi E., Scalfi L. Satiating Effect of a Barley Beta-Glucan–Enriched Snack. J. Am. Col. Nutr. 2010;29:113–121. doi: 10.1080/07315724.2010.10719824. PubMed DOI

Zbikowska A., Kowalska M., Zbikowska K., Onacik-Gür S., Łempicka U., Turek P. Study on the incorporation of oat and yeast β-glucan into shortbread biscuits as a basis for designing healthier and high-quality food products. Molecules. 2022;27:1393. doi: 10.3390/molecules27041393. PubMed DOI PMC

Brennan C.S., Tudorica C.M. Carbohydrate-Based Fat Replacers in the Modification of the Rheological, Textural and Sensory Quality of Yoghurt: Comparative Study of the Utilisation of Barley Beta-Glucan, Guar Gum and Inulin. Int. J. Food Sci. Technol. 2008;43:824–833. doi: 10.1111/j.1365-2621.2007.01522.x. DOI

Avramia I., Amariei S. Spent Brewer’s Yeast as a Source of Insoluble β-Glucans. Int. J. Molec. Sci. 2021;22:825. doi: 10.3390/ijms22020825. PubMed DOI PMC

Singh M., Kim S., Liu S.X. Effect of Purified Oat β-Glucan on Fermentation of Set-Style Yogurt Mix. J. Food Sci. 2012;77:E195–E201. doi: 10.1111/j.1750-3841.2012.02828.x. PubMed DOI

Hayaloglu A.A., Karaca O.B., Kaya A., Sahan N., Yasar K. Influence of Fat Replacers on Chemical Composition, Proteolysis, Texture Profiles, Meltability and Sensory Properties of Low-Fat Kashar Cheese. J. Dairy Res. 2008;75:1–7. doi: 10.1017/S0022029907002786. PubMed DOI

Volikakis P., Biliaderis C.G., Vamvakas C., Zerfiridis G.K. Effects of a Commercial Oat-β-Glucan Concentrate on the Chemical, Physico-Chemical and Sensory Attributes of a Low-Fat White-Brined Cheese Product. Food Res. Int. 2004;37:83–94. doi: 10.1016/j.foodres.2003.07.007. DOI

Tudorica C.M., Jones T.E.R., Kuri V., Brennan C.S. The Effects of Refined Barley β-Glucan on the Physico-Structural Properties of Low-Fat Dairy Products: Curd Yield, Microstructure, Texture and Rheology. J. Sci. Food Agric. 2004;84:1159–1169. doi: 10.1002/jsfa.1789. DOI

Raikos V., Grant S.B., Hayes H., Ranawana V. Use of β-Glucan from Spent Brewer’s Yeast as a Thickener in Skimmed Yogurt: Physicochemical, Textural, and Structural Properties Related to Sensory Perception. J. Dairy Sci. 2018;101:5821–5831. doi: 10.3168/jds.2017-14261. PubMed DOI

Santipanichwong R., Suphantharika M. Carotenoids as Colorants in Reduced-Fat Mayonnaise Containing Spent Brewer’s Yeast β-Glucan as a Fat Replacer. Food Hydrocol. 2007;21:565–574. doi: 10.1016/j.foodhyd.2006.07.003. DOI

Bhaskar D., Khatkar S.K., Chawla R., Panwar H., Kapoor S. Effect of β-Glucan Fortification on Physico-Chemical, Rheological, Textural, Colour and Organoleptic Characteristics of Low Fat Dahi. J. Food Sci. Technol. 2017;54:2684–2693. doi: 10.1007/s13197-017-2705-6. PubMed DOI PMC

Elsanhoty R., Zaghlol A., Hassanein A.H. The Manufacture of Low Fat Labneh Containing Barley β-Glucan 1-Chemical Composition, Microbiological Evaluation and Sensory Properties. Curr. Res. Dairy Sci. 2009;1:1–12. doi: 10.3923/crds.2009.1.12. DOI

Vithanage C.J., Mishra V.K., Vasiljevic T., Shah N. Use of β-Glucan in Development of Low-Fat Mozzarella Cheese. Milchwissenschaft. 2008;63:420–423.

Mykhalevych A., Polishchuk G., Nassar K., Osmak T., Buniowska-Olejnik M. β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review. Molecules. 2022;27:6313. doi: 10.3390/molecules27196313. PubMed DOI PMC

Salmerón I. Fermented Cereal Beverages: From Probiotic, Prebiotic and Synbiotic towards Nanoscience Designed Healthy Drinks. Lett. Appl. Microbiol. 2017;65:114–124. doi: 10.1111/lam.12740. PubMed DOI

Lamba A., Garg V. Nanotechnology Approach in Food Science: A Review. Nanotechnology. 2018;3:183–186.

Huang J., Wu C., Tang S., Zhou P., Deng J., Zhang Z., Wang Y., Wang Z. Chiral Active β-Glucan Nanoparticles for Synergistic Delivery of Doxorubicin and Immune Potentiation. Int. J. Nanomed. 2020;2020:5083–5095. doi: 10.2147/IJN.S258145. PubMed DOI PMC

Hwang J., Lee K., Gilad A.A., Choi J. Synthesis of Beta-Glucan Nanoparticles for the Delivery of Single Strand DNA. Biotech. Bioproc. Eng. 2018;23:144–149. doi: 10.1007/s12257-018-0003-4. DOI

Vetvicka V., Vetvickova J. Physiological effects of different types of β-glucan. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2007;151:225–231. doi: 10.5507/bp.2007.038. PubMed DOI

ul Ashraf Z., Shah A., Gani A., Gani A., Masoodi F.A., Noor N. Nanoreduction as a Technology to Exploit β-Glucan from Cereal and Fungal Sources for Enhancing Its Nutraceutical Potential. Carbohydr. Polym. 2021;258:117664. doi: 10.1016/j.carbpol.2021.117664. PubMed DOI

Bohn J.A., BeMiller J.N. (1→3)-β-d-Glucans as Biological Response Modifiers: A Review of Structure-Functional Activity Relationships. Carbohydr. Polym. 1995;28:3–14. doi: 10.1016/0144-8617(95)00076-3. DOI

Peltzer M., Delgado F.J., Salvay G.A., Wagner R.J. β-Glucan, a Promising Polysaccharide for Bio-Based Films Developments for Food Contact Materials and Medical Applications. Curr. Org. Chem. 2018;22:1249–1254. doi: 10.2174/1385272822666171129153633. DOI

Lante A., Canazza E., Tessari P. Beta-Glucans of Cereals: Functional and Technological Properties. Nutrients. 2023;15:2124. doi: 10.3390/nu15092124. PubMed DOI PMC

Pavlek Z., Bosnir J., Kuharic Z., Racz A., Jurak I., Lasic D., Markov K., Jakopovic Z., Frece J. The Influence of Binding of Selected Mycotoxin Deactivators and Aflatoxin M1 on the Content of Selected Micronutrients in Milk. Processes. 2022;10:2431. doi: 10.3390/pr10112431. DOI

Liu R., Zhu T., Li J., Wu T., Li Q., Meng Y., Cao Q., Zhang M. Physicochemical and Antioxidative Properties of Superfine-Ground Oat Bran Polysaccharides. Food Sci. Technol. Res. 2016;22:101–109. doi: 10.3136/fstr.22.101. DOI

ul Ashraf Z., Shah A., Gani A., Masoodi F.A., Noor N. Effect of Nano-Reduction on Properties of β-Glucan and Its Use as Encapsulating Agent for Release of α-Tocopherol. Bioact. Carbohydr. Diet. Fibre. 2020;24:100230. doi: 10.1016/j.bcdf.2020.100230. DOI

Udayangani R.M.C., Dananjaya S.H.S., Fronte B., Kim C.-H., Lee J., De Zoysa M. Feeding of Nano Scale Oats β-Glucan Enhances the Host Resistance against Edwardsiella Tarda and Protective Immune Modulation in Zebrafish Larvae. Fish Shellfish Immunol. 2017;60:72–77. doi: 10.1016/j.fsi.2016.11.035. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...