Virus removal by high-efficiency air (HEPA) filters and filtration capacity enhancement by nanotextiles: a pilot study
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38353790
PubMed Central
PMC11003890
DOI
10.1007/s12223-024-01137-4
PII: 10.1007/s12223-024-01137-4
Knihovny.cz E-resources
- Keywords
- Coronavirus, HEPA filter, Indoor air, Nanotextile, Respiratory virus,
- MeSH
- Filtration MeSH
- Humans MeSH
- Pilot Projects MeSH
- SARS-CoV-2 MeSH
- Severe Acute Respiratory Syndrome * MeSH
- Air Filters * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Portable household air purifiers are widely used devices designed to maintain a high-quality level of indoor air. Portable air purifiers equipped with the high-efficiency air (HEPA) filter served 100 h in a household space occupied by two adults without any symptoms of respiratory tract infection. The main objective of the study was to determine microbial contamination on the HEPA filter and to investigate if the selected nanotextile monolayer made of polyamide 6 (PA6) nanofibers can capture potential microorganisms when installed downstream of the HEPA filter as the final filtration medium. Samples were taken from the inlet and outlet surfaces. Samples from the nanotextile were collected in the same manner as from the HEPA filter. QIAStat DX® 1.0 Analyzer using the Respiratory SARS CoV-2 Panel multiplex PCR detection system was selected for microorganism detection. Adenovirus was detected on the inlet surface of the HEPA filter. The outlet surface of the filter contained no viruses included in the Respiratory SARS CoV-2 Panel portfolio. The nanotextile monolayer was replaced twice during the 100 h of operation, so three pieces were used and all contained coronavirus 229 E. Coronavirus 229 E was then detected in the nasopharynx of one of the members of the household as well. It may be assumed that the selected nanotextile is capable of capturing a virus of a small size.
See more in PubMed
Alia M, Ain Q. Advances in air filters based on electrospun nanofibers. Environ Contam Rev. 2020;3(1):32–36. doi: 10.26480/ecr.01.2020.32.36. DOI
Baron S. Med Microbiol. Austin: University of Texas; 1996.
El-Atab N, Mishra R, Hussain M. Toward nanotechnology-enabled face masks against SARS-CoV-2 and pandemic respiratory diseases. Nanotechnol. 2021;33(6):1–22. doi: 10.1088/1361-6528/ac3578. PubMed DOI
EN 1822–1 (2019) High efficiency air filters (EPA, HEPA and ULPA) - Part 1: Classification, performance testing, marking. Czech National Institution for ISO standards.
Goering R, Dockrell H, Zuckerman M, Chiodini P. Mimsʼ medical microbiology and immunology. Elsevier; 2018.
Harstad J, Filler M. Evaluation of air filters with submicron viral aerosols and bacterial aerosols. Am Ind Hyg Assoc J. 2007;30(3):280–290. doi: 10.1080/00028896909343122. PubMed DOI
Helmbuch B, Hodge J, Wander J (2007) Viral penetration of high efficiency particulate air (HEPA) filters. https://www.researchgate.net/publication/235151297_Viral_Penetration_of_High_Efficiency_Particulate_Air_HEPA_Filters
Hogan C, Kettleson LM, Ramaswami B, Angenent L, Biswas P. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J Appl Microbiol. 2005;99(6):1422–1434. doi: 10.1111/j.1365-2672.2005.02720.x. PubMed DOI
Kowalski W, Bahnfleth W, Whittam T (1999) Filtration of airborne microorganisms: modeling and prediction. ASHRAE Transactions: Research 4–16. https://www.researchgate.net/publication/242434719_Filtration_of_airborne_microorganisms_Modeling_and_prediction
Lee K, Liu B. On the minimum efficiency and the most penetrating particle size for fibrous filters. J Air Pollut Control Assoc. 1980;30(4):377–381. doi: 10.1080/00022470.1980.10464592. DOI
Lev J, Kalhotka L, Černý M. Nanotextile membranes for bacteria Escherichia coli capturing. Acta Univ Agric et Silvic Mendelianae Brun. 2010;27(5):239–246. doi: 10.11118/actaun201058050239. DOI
Lindsley W, Derk R, Coyle J, Martin S, Mead K, Blachere F, Beezhold D, Brooks J, Boots T, Noti J. Efficacy of portable air cleaners and masking for reducing indoor exposure to simulated exhaled SARS-CoV-2 Aerosols. MMWR Morb Mortal Wkly. 2021;70(27):972–976. doi: 10.15585/mmwr.mm7027e1. PubMed DOI PMC
Lippi M, Riva L, Caruso M, Punta C. Cellulose for the production of air-filtering systems: a critical review. Mater. 2022;15(3):-–-. doi: 10.3390/ma15030976. PubMed DOI PMC
Myers N, Laumbach R, Black K, Ohman-Strickland P, Alimokhtari S, Legard A, DeResende A, Calderón L, Lu F, Mainelis G, Howard K. Portable air cleaners and residential exposure to SARS-CoV-2 aerosols: a real-world study. Indoor Air. 2022;32(4):-–-. doi: 10.1111/ina.13029. PubMed DOI PMC
Naragund V, Panda P. Electrospun nanofiber-based respiratory face masks—a review. Emergent Mater. 2022;5(2):261–278. doi: 10.1007/s42247-022-00350-6. PubMed DOI PMC
Obitková D, Pavlík E (2019) Nanotextile in air filtration: a pilot study. In International Masaryk's Conference for PhD. Students and young researchers MMK 2019 (10):1494–1508. Magnanimitas
Olsen S, Chang H, Yung-Yan Cheung T, Fai-Yu Tang A, Peng-Lim FT, Ooi S, Kuo H, Dah-Shyong Jiang D, Chen K, Lando J, Hsu K, Chen T, Dowell S. Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med. 2003;349(25):2416–2422. doi: 10.1056/NEJMoa031349. PubMed DOI
Orlando R, Polat M, Afshari A, Johnson M, Fojan P. Electrospun nanofibre air filters for particles and gaseous pollutants. Sustainability. 2021;13(12):-–-. doi: 10.3390/su13126553. DOI
Perry J, Agui J, Vijayakumar R (2016) Submicron and nanoparticulate matter removal by HEPA-rated media filters and packed beds of granular materials: NASA/TM—2016–218224. NASA STI. http://www.sti.nasa.gov
Pirtle E, Beran G. Virus survival in the environment. Rev Sci Tech OIE. 1991;10(3):733–748. doi: 10.20506/rst.10.3.570. PubMed DOI
Podgórski A, Bałazy A, Gradoń L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci. 2006;61(20):6804–6815. doi: 10.1016/j.ces.2006.07.022. DOI
Ravichandran R, Sundarrajan S, Venugopal J, Mukherjee S, Ramakrishna S. Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci. 2012;12(3):286–311. doi: 10.1002/mabi.201100325. PubMed DOI
Rodríguez M, Palop M, Seseña S, Rodríguez A. Are the portable air cleaners (PAC) really effective to terminate airborne SARS-CoV-2? Sci Total Environ. 2021;785(-):-–-. doi: 10.1016/j.scitotenv.2021.147300. PubMed DOI PMC
Sundarrajan S, Tan K, Lim S, Ramakrishna S. Electrospun nanofibers for air filtration applications. Procedia Eng. 2014;75:159–163. doi: 10.1016/j.proeng.2013.11.034. DOI
Wang Z, Zhao C, Pan Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci. 2015;441:121–129. doi: 10.1016/j.jcis.2014.11.041. PubMed DOI