Semi-Automated MicroCT Analysis of Bone Anatomy and Mineralization in Mouse Models
Language English Country United States Media print
Document type Journal Article
PubMed
38385868
DOI
10.1002/cpz1.980
Knihovny.cz E-resources
- Keywords
- cortical bone, femur, lumbar vertebra, microCT, mineralization, skeleton phenotyping, trabecular bone,
- MeSH
- Lumbar Vertebrae MeSH
- Femur diagnostic imaging MeSH
- Calcinosis * MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- X-Ray Microtomography MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The skeletal system mirrors several processes in the vertebrate body that impact developmental malfunctions, hormonal disbalance, malfunction of calcium metabolism and turn over, and inflammation processes such as arthrosis. X-ray micro computed tomography is a useful tool for 3D in situ evaluation of the skeletal system in a time-related manner, but results depend highly on resolution. Here, we provide the methodological background for a graduated evaluation from whole-body analysis of skeletal morphology and mineralization to high-resolution analysis of femoral and vertebral microstructure. We combine an expert-based evaluation with a machine-learning-based computational approach, including pre-setup analytical task lists. © 2024 Wiley Periodicals LLC. Basic Protocol 1: In vivo microCT scanning and skeletal analysis in mice Basic Protocol 2: Ex vivo high-resolution microCT scanning and microstructural analysis of the femur and L4 vertebra.
See more in PubMed
Battafarano, G., Rossi, M., Marampon, F., Minisola, S., & Del Fattore, A. (2020). Bone control of muscle function. International Journal of Molecular Sciences, 21, 1178. https://doi.org/10.3390/ijms21041178
Beamer, W. G., Shultz, K. L., Churchill, G. A., Frankel, W. N., Baylink, D. J., Rosen, C. J., & Donahue, L. R. (1999). Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mammalian Genome, 10, 1043-1049. https://doi.org/10.1007/s003359901159
Benova, A., Ferencakova, M., Bardova, K., Funda, J., Prochazka, J., Spoutil, F., Cajka, T., Dzubanova, M., Balcaen, T., Kerckhofs, G., Willekens, W., van Lenthe, G. H., Charyyeva, A., Alquicer, G., Pecinova, A., Mracek, T., Horakova, O., Coupeau, R., Hansen, M. S., … Tencerova, M. (2023). Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity. Communications Biology, 6, 1043. https://doi.org/10.1038/s42003-023-05407-8
Bouxsein, M. L., Uchiyama, T., Rosen, C. J., Shultz, K. L., Donahue, L. R., Turner, C. H., Sen, S., Churchill, G. A., Müller, R., & Beamer, W. G. (2004). Mapping quantitative trait loci for vertebral trabecular bone volume fraction and microarchitecture in mice. Journal of Bone and Mineral Research, 19, 587-599. https://doi.org/10.1359/JBMR.0301255
Brouwers, J. E. M., van Rietbergen, B., & Huiskes, R. (2007). No effects of in vivo micro-CT radiation on structural parameters and bone marrow cells in proximal tibia of Wistar rats detected after eight weekly scans. Journal of Orthopaedic Research, 25, 1325-1332. https://doi.org/10.1002/jor.20439
Cooper, D., Turinsky, A., Sensen, C., & Hallgrimsson, B. (2007). Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcified Tissue International, 80, 211-219. https://doi.org/10.1007/s00223-005-0274-6
Dorr, A., Sled, J. G., & Kabani, N. (2007). Three-dimensional cerebral vasculature of the CBA mouse brain: A magnetic resonance imaging and micro computed tomography study. NeuroImage, 35, 1409-1423. https://doi.org/10.1016/j.neuroimage.2006.12.040
Eckstein, F., Matsuura, M., Kuhn, V., Priemel, M., Müller, R., Link, T. M., & Lochmüller, E.-M. (2007). Sex differences of human trabecular bone microstructure in aging are site-dependent. Journal of Bone and Mineral Research, 22, 817-824. https://doi.org/10.1359/jbmr.070301
Gao, C., Chen, B. P., Sullivan, M. B., Hui, J., Ouellet, J. A., Henderson, J. E., & Saran, N. (2015). Micro CT analysis of spine architecture in a mouse model of scoliosis. Frontiers in Endocrinology, 6, 38. https://doi.org/10.3389/fendo.2015.00038
Gewartowska, O., Aranaz-Novaliches, G., Krawczyk, P. S., Mroczek, S., Kusio-Kobiałka, M., Tarkowski, B., Spoutil, F., Benada, O., Kofroňová, O., Szwedziak, P., Cysewski, D., Gruchota, J., Szpila, M., Chlebowski, A., Sedlacek, R., Prochazka, J., & Dziembowski, A. (2021). Cytoplasmic polyadenylation by TENT5A is required for proper bone formation. Cell Reports, 35, 109015. https://doi.org/10.1016/j.celrep.2021.109015
Jepsen, K. J., Akkus, O. J., Majeska, R. J., & Nadeau, J. H. (2003). Hierarchical relationship between bone traits and mechanical properties in inbred mice. Mammalian Genome, 14, 97-104. https://doi.org/10.1007/s00335-002-3045-y
Jepsen, K. J., Silva, M. J., Vashishth, D., Guo, X. E., & van der Meulen, M. C. (2015). Establishing biomechanical mechanisms in mouse models: Practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. Journal of Bone and Mineral Research, 30, 951-966. https://doi.org/10.1002/jbmr.2539
Jiang, Y., Zhao, J., Liao, E.-Y., Dai, R.-C., Wu, X.-P., & Genant, H. K. (2005). Application of micro-CT assessment of 3-D bone microstructure in preclinical and clinical studies. Journal of Bone and Mineral Metabolism, 23 Suppl, 122-131. https://doi.org/10.1007/BF03026336
Jiang, Y., Zhao, J., White, D. L., & Genant, H. K. (2000). Micro CT and micro MR imaging of 3D architecture of animal skeleton. Journal of Musculoskeletal & Neuronal Interactions, 1, 45-51.
Jilka, R. L. (2013). The relevance of mouse models for investigating age-related bone loss in humans. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68, 1209-1217. https://doi.org/10.1093/gerona/glt046
Kerschan-Schindl, K., Papageorgiou, M., Föger-Samwald, U., Butylina, M., Weber, M., & Pietschmann, P. (2022). Assessment of bone microstructure by micro CT in C57BL/6J mice for sex-specific differentiation. International Journal of Molecular Sciences, 23, 14585. https://doi.org/10.3390/ijms232314585
Kralova, J., Drobek, A., Prochazka, J., Spoutil, F., Fabisik, M., Glatzova, D., Borna, S., Pokorna, J., Skopcova, T., Angelisova, P., Gregor, M., Kovarik, P., Sedlacek, R., & Brdicka, T. (2020). Dysregulated NADPH oxidase promotes bone damage in murine model of autoinflammatory osteomyelitis. Journal of Immunology, 204, 1607-1620. https://doi.org/10.4049/jimmunol.1900953
Mackie, E. J., Tatarczuch, L., & Mirams, M. (2011). The skeleton: A multi-functional complex organ. The growth plate chondrocyte and endochondral ossification. Journal of Endocrinology, 211, 109-121. https://doi.org/10.1530/JOE-11-0048
McCalden, R. W., McGeough, J. A., Barker, M. B., & Court-Brown, C. M. (1993). Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. Journal of Bone and Joint Surgery, American Volume, 75, 1193-1205. https://doi.org/10.2106/00004623-199308000-00009
Rowan, D. J., Tomatsu, S., Grubb, J. H., Montaño, A. M., & Sly, W. S. (2013). Assessment of bone dysplasia by micro-CT and glycosaminoglycan levels in mouse models for mucopolysaccharidosis type I, IIIA, IVA, and VII. Journal of Inherited Metabolic Disease, 36, 235-246. https://doi.org/10.1007/s10545-012-9522-x
Rühli, F. j., Kuhn, G., Evison, R., Müller, R., & Schultz, M. (2007). Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human skull bone pathologies. American Journal of Physical Anthropology, 133, 1099-1111. https://doi.org/10.1002/ajpa.20611
Saless, N., Litscher, S. J., Houlihan, M. J., Han, I. K., Wilson, D., Demant, P., & Blank, R. D. (2011). Comprehensive skeletal phenotyping and linkage mapping in an intercross of recombinant congenic mouse strains HcB-8 and HcB-23. Cells, Tissues, Organs, 194, 244-248. https://doi.org/10.1159/000324774
Spoutil, F., Aranaz-Novaliches, G., Prochazkova, M., Wald, T., Novosadova, V., Kasparek, P., Osicka, R., Reseland, J. E., Lyngstadaas, S. P., Tiainen, H., Bousova, K., Vondrasek, J., Sedlacek, R., & Prochazka, J. (2023). Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions. Scientific Reports, 13, 1471. https://doi.org/10.1038/s41598-023-28388-4
Turner, C. H., Hsieh, Y. F., Müller, R., Bouxsein, M. L., Baylink, D. J., Rosen, C. J., Grynpas, M. D., Donahue, L. R., & Beamer, W. G. (2000). Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. Journal of Bone and Mineral Research, 15, 1126-1131. https://doi.org/10.1359/jbmr.2000.15.6.1126
Turner, C. H., Hsieh, Y.-F., Müller, R., Bouxsein, M. L., Rosen, C. J., McCrann, M. E., Donahue, L. R., & Beamer, W. G. (2001). Variation in bone biomechanical properties, microstructure, and density in BXH recombinant inbred mice. Journal of Bone and Mineral Research, 16, 206-213. https://doi.org/10.1359/jbmr.2001.16.2.206
Velde, G. V., De Langhe, E., Poelmans, J., Dresselaers, T., Lories, R. J., & Himmelreich, U. (2014). Magnetic resonance imaging for noninvasive assessment of lung fibrosis onset and progression: Cross-validation and comparison of different magnetic resonance imaging protocols with micro-computed tomography and histology in the bleomycin-induced mouse model. Investigative Radiology, 49, 691. https://doi.org/10.1097/RLI.0000000000000071
Wellik, D. M. (2007). Hox patterning of the vertebrate axial skeleton. Developmental Dynamics, 236, 2454-2463. https://doi.org/10.1002/dvdy.21286
Skeletal dysmorphology and mineralization defects in Fgf20 KO mice