Enzootic Circulation, Massive Gull Mortality and Poultry Outbreaks during the 2022/2023 High-Pathogenicity Avian Influenza H5N1 Season in the Czech Republic

. 2024 Jan 31 ; 16 (2) : . [epub] 20240131

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38399998

In 2022/2023, Europe experienced its third consecutive season of high-pathogenicity avian influenza. During this period, the Czech Republic was again severely affected. For the first time, the number of culled birds approached one million, which was three times higher than in previous seasons. In parallel to the outbreaks in poultry, mass die-offs of gulls were also observed. In the present study, we performed whole-genome sequencing and phylogenetic analysis of 137 H5N1 strains collected in the Czech Republic in 2022/2023 (94.6% of all outbreaks or locations). The analysis revealed four distinct genotypes: AB, CH, BB and AF. Phylogenetic analysis suggested that the AF genotype persisted from the previous H5N1 season without reassortment. In addition, the genotype BB, which was detected mainly in gulls, showed a noticeable strain diversity at the local level. This virus was also responsible for a single outbreak in commercially bred turkeys. Finally, an interesting spatio-temporal cluster with three co-circulating H5N1 genotypes, AB, CH and AF, was identified with no evidence of intrasubtype reassortment. Highly sensitive molecular surveillance and the timely sharing of genomic sequences and associated metadata could greatly assist in tracking the spread and detecting molecular changes associated with the increased virulence of this potentially zoonotic pathogen.

Zobrazit více v PubMed

EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview June–September 2022. EFSA J. 2022;20:7597. doi: 10.2903/j.efsa.2022.7597. DOI

Xie R., Edwards K.M., Wille M., Wei X., Wong S.S., Zanin M., El-Shesheny R., Ducatez M., Poon L.L.M., Kayali G., et al. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature. 2023;622:810–817. doi: 10.1038/s41586-023-06631-2. PubMed DOI

Munster V.J., Baas C., Lexmond P., Waldenström J., Wallensten A., Fransson T., Rimmelzwaan G.F., Beyer W.E., Schutten M., Olsen B., et al. Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog. 2007;3:5. doi: 10.1371/journal.ppat.0030061. PubMed DOI PMC

Cattoli G., Fusaro A., Monne I., Capua I. H5N1 Virus Evolution in Europe-An Updated Overview. Viruses. 2009;1:1351–1363. doi: 10.3390/v1031351. PubMed DOI PMC

Lewis N.S., Banyard A.C., Whittard E., Karibayev T., Al Kafagi T., Chvala I., Byrne A., Meruyert Akberovna S., King J., Harder T., et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg. Microbes Infect. 2021;10:148–151. doi: 10.1080/22221751.2021.1872355. PubMed DOI PMC

Pohlmann A., King J., Fusaro A., Zecchin B., Banyard A.C., Brown I.H., Byrne A.M.P., Beerens N., Liang Y., Heutink R., et al. Has Epizootic Become Enzootic? Evidence for a Fundamental Change in the Infection Dynamics of Highly Pathogenic Avian Influenza in Europe, 2021. mBio. 2022;13:e0060922. doi: 10.1128/mbio.00609-22. PubMed DOI PMC

EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Brown I., Mulatti P., Smietanka K., Staubach C., Willeberg P., Adlhoch C., Candiani D., et al. Scientific report on the avian influenza overview October 2016–August 2017. EFSA J. 2017;15:5018. doi: 10.2903/j.efsa.2017.5018. PubMed DOI PMC

EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview March–June 2022. EFSA J. 2022 June 20;20:7415. doi: 10.2903/j.efsa.2022.7415. DOI

EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview August–December 2020. EFSA J. 2020;18:6379. doi: 10.2903/j.efsa.2020.6379. DOI

EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Niqueux É., Staubach C., et al. Scientific report: Avian influenza overview May–September 2021. EFSA J. 2022;20:7122. doi: 10.2903/j.efsa.2022.7122. PubMed DOI PMC

Banyard A.C., Lean F.Z.X., Robinson C., Howie F., Tyler G., Nisbet C., Seekings J., Meyer S., Whittard E., Ashpitel H.F., et al. Detection of Highly Pathogenic Avian Influenza Virus H5N1 Clade 2.3.4.4b in Great Skuas: A Species of Conservation Concern in Great Britain. Viruses. 2022;14:212. doi: 10.3390/v14020212. PubMed DOI PMC

Rijks J.M., Leopold M.F., Kühn S., In ‘t Veld R., Schenk F., Brenninkmeijer A., Lilipaly S.J., Ballmann M.Z., Kelder L., de Jong J.W., et al. Mass Mortality Caused by Highly Pathogenic Influenza A(H5N1) Virus in Sandwich Terns, the Netherlands, 2022. Emerg. Infect. Dis. 2022;28:2538–2542. doi: 10.3201/eid2812.221292. PubMed DOI PMC

Pohlmann A., Stejskal O., King J., Bouwhuis S., Packmor F., Ballstaedt E., Hälterlein B., Hennig V., Stacker L., Graaf A., et al. Mass mortality among colony-breeding seabirds in the German Wadden Sea in 2022 due to distinct genotypes of HPAIV H5N1 clade 2.3.4.4b. J. Gen. Virol. 2023;104:001834. doi: 10.1099/jgv.0.001834. PubMed DOI

Lane J.V., Jeglinski J.W.E., Avery-Gomm S., Ballstaedt E., Banyard A.C., Barychka T., Brown I.H., Brugger B., Burt T.V., Careen N., et al. High pathogenicity avian influenza (H5N1) in Northern Gannets (Morus bassanus): Global spread, clinical signs and demographic consequences. Ibis. :2023. doi: 10.1111/ibi.13275. DOI

Camphuysen K., Gear S. Great Skuas and Northern Gannets on Foula, summer 2022—An unprecedented, H5N1 related massacre. NIOZ. :2022. doi: 10.25850/nioz/7b.b.gd. DOI

Knief U., Bregnballe T., Alfarwi I., Ballmann M., Brenninkmeijer A., Bzoma S., Chabrolle A., Dimmlich J., Engel E., Fijn R., et al. Highly pathogenic avian influenza causes mass mortality in Sandwich tern (Thalasseus sandvicensis) breeding colonies across northwestern Europe. bioRxiv. 2023 doi: 10.1101/2023.05.12.540367. DOI

EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Marangon S., Stahl K., Niqueux É., et al. Scientific report: Avian influenza overview December 2022–March 2023. EFSA J. 2023;21:7917. doi: 10.2903/j.efsa.2023.7917. PubMed DOI PMC

Nagy A., Černíková L., Kunteová K., Dirbáková Z., Thomas S.S., Slomka M.J., Dán Á., Varga T., Máté M., Jiřincová H., et al. A universal RT-qPCR assay for "One Health" detection of influenza A viruses. PLoS ONE. 2021;16:e0244669. doi: 10.1371/journal.pone.0244669. PubMed DOI PMC

Slomka M.J., Pavlidis T., Banks J., Shell W., McNally A., Essen S., Brown I.H. Validated H5 Eurasian real-time reverse transcriptase-polymerase chain reaction and its application in H5N1 outbreaks in 2005–2006. Avian Dis. 2007;51:373–377. doi: 10.1637/7664-060906R1.1. PubMed DOI

Payungporn S., Chutinimitkul S., Chaisingh A., Damrongwantanapokin S., Buranathai C., Amonsin A., Theamboonlers A., Poovorawan Y. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection. J. Virol. Methods. 2006;131:143–147. doi: 10.1016/j.jviromet.2005.08.004. PubMed DOI

James J., Seekings A.H., Skinner P., Purchase K., Mahmood S., Brown I.H., Hansen R.D.E., Banyard A.C., Reid S.M. Rapid and sensitive detection of high pathogenicity Eurasian clade 2.3.4.4b avian influenza viruses in wild birds and poultry. J. Virol. Methods. 2022;301:114454. doi: 10.1016/j.jviromet.2022.114454. PubMed DOI

Arctic Network. [(accessed on 17 February 2022)]. Available online: https://web.archive.org/web/20221021094307/https://artic.network/

Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M., et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC

Sahlin K., Lim M.C.W., Prost S. NGSpeciesID: DNA barcode and amplicon consensus generation from long-read sequencing data. Ecol. Evol. 2021;11:1392–1398. doi: 10.1002/ece3.7146. PubMed DOI PMC

Vierstraete A.R., Braeckman B.P. Amplicon_sorter: A tool for reference-free amplicon sorting based on sequence similarity and for building consensus sequences. Ecol. Evol. 2022;12:e8603. doi: 10.1002/ece3.8603. PubMed DOI PMC

Katoh K., Rozewicki J., Kazunori K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC

Hatcher E.L., Zhdanov S.A., Bao Y., Blinkova O., Nawrocki E.P., Ostapchuck Y., Schäffer A.A., Brister J.R. Virus Variation Resource—Improved response to emergent viral outbreaks. Nucleic Acids Res. 2017;45:D482–D490. doi: 10.1093/nar/gkw1065. PubMed DOI PMC

Larsson A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC

Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC

Rice P., Longden I., Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI

EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Mirinaviciute G., Niqueux É., Stahl K., et al. Scientific report: Avian influenza overview March–April 2023. EFSA J. 2023;21:8039. doi: 10.2903/j.efsa.2023.8039. DOI

Suttie A., Deng Y.M., Greenhill A.R., Dussart P., Horwood P.F., Karlsson E.A. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes. 2019;6:739–768. doi: 10.1007/s11262-019-01700-z. PubMed DOI PMC

Pinto R.M., Bakshi S., Lytras S., Zakaria M.K., Swingler S., Worrell J.C., Herder V., Hargrave K.E., Varjak M., Cameron-Ruiz N., et al. BTN3A3 evasion promotes the zoonotic potential of influenza A viruses. Nature. 2023;619:338–347. doi: 10.1038/s41586-023-06261-8. PubMed DOI

EFSA (European Food Safety Authority) ECDC (European Centre for Disease Prevention and Control) EURL (European Reference Laboratory for Avian Influenza) Adlhoch C., Fusaro A., Gonzales J.L., Kuiken T., Melidou A., Mirinavičiūtė G., Niqueux É., et al. Scientific report: Avian influenza overview April–June 2023. EFSA J. 2023;21:8191. doi: 10.2903/j.efsa.2023.8191. DOI

Fusaro A., Zecchin B., Giussani E., Palumbo E., Agüero-García M., Bachofen C., Bálint Á., Banihashem F., Banyard A.C., Beerens N., et al. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe—why trends of virus evolution are more difficult to predict. under review. PubMed PMC

Nagy A., Stará M., Černíková L., Hofmannová L., Sedlák K. Genotype Diversity, Wild Bird-to-Poultry Transmissions, and Farm-to-Farm Carryover during the Spread of the Highly Pathogenic Avian Influenza H5N1 in the Czech Republic in 2021/2022. Viruses. 2023;15:293. doi: 10.3390/v15020293. PubMed DOI PMC

Nagy A., Černíková L., Stará M., Hofmannová L., Sedlák K. Genotype Uniformity, Wild Bird-to-Poultry Transmissions, and Farm-to-Farm Carryover during the Spread of the Highly Pathogenic Avian Influenza H5N8 in the Czech Republic in 2021. Viruses. 2022;14:1411. doi: 10.3390/v14071411. PubMed DOI PMC

Bouwstra R.J., Koch G., Heutink R., Harders F., van der Spek A., Elbers A.R., Bossers A. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Eurosurveillance. 2015;20:21174. doi: 10.2807/1560-7917.ES2015.20.26.21174. PubMed DOI

Śmietanka K., Świętoń E., Kozak E., Wyrostek K., Tarasiuk K., Tomczyk G., Konopka B., Welz M., Domańska-Blicharz K., Niemczuk K. Highly Pathogenic Avian Influenza H5N8 in Poland in 2019–2020. J. Vet. Res. 2020;64:469–476. doi: 10.2478/jvetres-2020-0078. PubMed DOI PMC

Venkatesh D., Brouwer A., Goujgoulova G., Ellis R., Seekings J., Brown I.H., Lewis N.S. Regional Transmission and Reassortment of 2.3.4.4b Highly Pathogenic Avian Influenza (HPAI) Viruses in Bulgarian Poultry 2017/18. Viruses. 2020;12:605. doi: 10.3390/v12060605. PubMed DOI PMC

Lambert S., Durand B., Andraud M., Delacourt R., Scoizec A., Le Bouquin S., Rautureau S., Bauzile B., Guinat C., Fourtune L., et al. Two major epidemics of highly pathogenic avian influenza virus H5N8 and H5N1 in domestic poultry in France, 2020-2022. Transbound. Emerg. Dis. 2022;69:3160–3166. doi: 10.1111/tbed.14722. PubMed DOI

Filaire F., Lebre L., Foret-Lucas C., Vergne T., Daniel P., Lelièvre A., De Barros A., Jbenyeni A., Bolon P., Paul M., et al. Highly Pathogenic Avian Influenza A(H5N8) Clade 2.3.4.4b Virus in Dust Samples from Poutry Farms, France, 2021. Emerg. Infect. Dis. 2022;28:1446–1450. doi: 10.3201/eid2807.212247. PubMed DOI PMC

Velkers F.C., Manders T.T.M., Vernooij J.C.M., Stahl J., Slaterus R., Stegeman J.A. Association of wild bird densities around poultry farms with the risk of highly pathogenic avian influenza virus subtype H5N8 outbreaks in the Netherlands, 2016. Transbound Emerg Dis. 2021;68:76–87. doi: 10.1111/tbed.13595. PubMed DOI PMC

Wang R., Soll L., Dugan V., Runstadler J., Happ G., Slemons R.D., Taubenberger J.K. Examining the hemagglutinin subtype diversity among wild duck-origin influenza A viruses using ethanol-fixed cloacal swabs and a novel RT-PCR method. Virology. 2008;375:182–189. doi: 10.1016/j.virol.2008.01.041. PubMed DOI PMC

Hill N.J., Takekawa J.Y., Cardona C.J., Meixell B.W., Ackerman J.T., Runstadler J.A., Boyce W.M. Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: A flyway perspective. Vector Borne Zoonotic Dis. 2012;12:243–253. doi: 10.1089/vbz.2010.0246. PubMed DOI PMC

Lindsay L.L., Kelly T.R., Plancarte M., Schobel S., Lin X., Dugan V.G., Wentworth D.E., Boyce W.M. Avian influenza: Mixed infections and missing viruses. Viruses. 2013;5:1964–1977. doi: 10.3390/v5081964. PubMed DOI PMC

Nagy A., Černíková L., Jiřincová H., Havlíčková M., Horníčková J. Local-scale diversity and between-year “frozen evolution” of avian influenza A viruses in nature. PLoS ONE. 2014;30:e103053. doi: 10.1371/journal.pone.0103053. PubMed DOI PMC

Hill N.J., Bishop M.A., Trovão N.S., Ineson K.M., Schaefer A.L., Puryear W.B., Zhou K., Foss A.D., Clark D.E., MacKenzie K.G., et al. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog. 2022;18:e1010062. doi: 10.1371/journal.ppat.1010062. PubMed DOI PMC

Cepak J., Klvana P., Skopek J., Schropfer L., Jelinek M., Horak D., Formanek J., Zarybnicky J. Czech and Slovak Bird Migration Atlas. 1st ed. Aventinum; Prague, Czech Republic: 2008. pp. 217–221.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...