Detection of Hybrids in Willows (Salix, Salicaceae) Using Genome-Wide DArTseq Markers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GFD_PdF_2023_06
Faculty of Education, Palacky University Olomouc
PubMed
38475486
PubMed Central
PMC10935248
DOI
10.3390/plants13050639
PII: plants13050639
Knihovny.cz E-zdroje
- Klíčová slova
- DArTseq, Salix, biomass crop, hybrid identification, hybridisation, systematics, willow,
- Publikační typ
- časopisecké články MeSH
The genus Salix, comprising some 400-500 species, is important in various alluvial or wet habitats of the northern hemisphere. It is a promising crop for applications such as biomass production, biofuels, or environmental projects. Clear species delimitation is crucial in ecology, biotechnology, and horticulture. DArTseq markers, a genome-wide technique, were tested for species and hybrid identification. A total of 179 willow samples were analysed, including six species of Salix subgen. Salix and four species of Salix subgen. Vetrix, including those used in biomass crop production, representing important European taxa. Identification of species-specific markers, clustering analyses (principal coordinate analysis, neighbor-joining) and Bayesian methods (Structure) unambiguously identified putative hybrids. In addition to demonstrating the high efficiency of DArT-seq markers in identifying willow hybrids, we also opened-up new questions about hybridisation processes and systematics. We detected unidirectional hybridisation between S. alba and S. fragilis, forming backcross hybrids, and we rejected the hypothesis that S. fragilis does not occur naturally in Europe. Further, the isolated position of Salix triandra within the genus was confirmed.
Department of Biology Faculty of Education Palacky University Olomouc 779 00 Olomouc Czech Republic
Department of Botany Faculty of Science Palacky University Olomouc 783 71 Olomouc Czech Republic
Zobrazit více v PubMed
Harrison R.G. Oxford Surveys in Evolutionary Biology. Volume 7. Oxford University Press; Oxford, UK: 1991. Hybrid Zones: Windows on Evolutionary Process; pp. 69–128.
Aylott M.J., Casella E., Tubby I., Street N.R., Smith P., Taylor G. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol. 2008;178:358–370. doi: 10.1111/j.1469-8137.2008.02396.x. PubMed DOI
Volk T.A., Heavey J.P., Eisenbies M.H. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits. Food Energy Secur. 2016;5:97–106. doi: 10.1002/fes3.82. DOI
Volk T.A., Berguson B., Daly C., Halbleib M.D., Miller R., Rials T.G., Abrahamson L.P., Buchman D., Buford M., Cunningham M.W., et al. Poplar and shrub willow energy crops in the United States: Field trial results from the multiyear regional feedstock partnership and yield potential maps based on the PRISM-ELM Model. GCB Bioenergy. 2018;10:735–751. doi: 10.1111/gcbb.12498. DOI
Kuzovkina Y.A., Quigley M.F. Willows beyond wetlands: Uses of Salix L. species for environmental projects. Water Air Soil Pollut. 2005;162:183–204. doi: 10.1007/s11270-005-6272-5. DOI
DAISIE . Handbook of Alien Species in Europe. Springer; Berlin/Heidelberg, Germany: 2009. pp. 1–399. DOI
Pergl J., Sádlo J., Petrusek A., Laštůvka Z., Musil J., Perglová I., Šanda R., Šefrová H., Šíma J., Vohralík V., et al. Black, grey and watch lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota. 2016;28:1–37. doi: 10.3897/neobiota.28.4824. DOI
Richardson D.M., Rejmánek M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011;17:788–809. doi: 10.1111/j.1472-4642.2011.00782.x. DOI
Lester P.J., Mitchell S.F., Scott D. Effects of riparian willow trees (Salix fragilis) on macroinvertebrate densities in two small Central Otago, New Zealand, streams. N. Z. J. Mar. Freshw. Res. 1994;28:267–276. doi: 10.1080/00288330.1994.9516614. DOI
McInerney P.J., Rees G.N., Gawne B., Suter P. Invasive Salix fragilis: Altered metabolic patterns in Australian streams. Hydrobiologia. 2016;767:267–277. doi: 10.1007/s10750-015-2507-7. DOI
Sühs R.B., Dechoum M.d.S., Ziller S.R. Invasion by a non-native willow (Salix ×rubens) in Brazilian subtropical highlands. Perspect. Ecol. Conserv. 2020;18:203–209. doi: 10.1016/j.pecon.2020.09.001. DOI
Fang C.-F., Zhao S.-D., Skvortsov A.K. Flora of China. Science Press; Beijing, China: Missouri Botanical Garden Press; St. Louis, MO, USA: 1999. Salicaceae Mirbel; pp. 139–274. Volume 4 Cycadaceae through Fagaceae.
Argus G.W. Flora of North America North of Mexico. Oxford University Press; Oxford, UK: 2010. Salix Linnaeus; pp. 23–51. Volume 7 Magnoliophyta: Salicaceae to Brassicaceae.
Karrenberg S., Edwards P.J., Kollmann J. the life history of Salicaceae living in the active zone of floodplains. Freshw. Biol. 2002;47:733–748. doi: 10.1046/j.1365-2427.2002.00894.x. DOI
Wagner N.D., He L., Hörandl E. The evolutionary history, diversity, and ecology of willows (Salix L.) in the European Alps. Diversity. 2021;13:146. doi: 10.3390/d13040146. DOI
Gramlich S., Wagner N.D., Hörandl E. RAD-seq reveals genetic structure of the F2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC Plant Biol. 2018;18:317. doi: 10.1186/s12870-018-1552-6. PubMed DOI PMC
Jaccoud D., Peng K., Feinstein D., Kilian A. Diversity Arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001;29:e25. doi: 10.1093/nar/29.4.e25. PubMed DOI PMC
Kilian A., Wenzl P., Huttner E., Carling J., Xia L., Blois H., Caig V., Heller-Uszynska K., Jaccoud D., Hopper C., et al. Diversity Arrays Technology: A generic genome profiling technology on open platforms. In: Pompanon F., Bonin A., editors. Data Production and Analysis in Population Genomics. Volume 888. Humana Press; New York, NY, USA: 2012. pp. 67–89. PubMed
Przyborowski J.A., Sulima P., Kuszewska A., Zaluski D., Kilian A. Phylogenetic relationships between four Salix L. species based on DArT markers. Int. J. Mol. Sci. 2013;14:24113–24125. doi: 10.3390/ijms141224113. PubMed DOI PMC
Triest L. Hybridization in staminate and pistillate Salix alba and S. fragilis (Salicaceae): Morphology versus RAPDs. Pl. Syst. Evol. 2001;226:143–154. doi: 10.1007/s006060170062. DOI
Barcaccia G., Meneghetti S., Albertini E., Triest L., Lucchin M. Linkage mapping in tetraploid willows: Segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba × Salix fragilis interspecific hybrids. Heredity. 2003;90:169–180. doi: 10.1038/sj.hdy.6800213. PubMed DOI
Beismann H., Barker J.H.A., Karp A., Speck T. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol. Ecol. 2003;6:989–993. doi: 10.1046/j.1365-294X.1997.00273.x. DOI
Oberprieler C., Dietz L., Harlander C., Heilmann J. Molecular and phytochemical evidence for the taxonomic integrity of Salix alba, S. fragilis, and their hybrid S. ×rubens (Salicaceae) in mixed stands in SE Germany. Pl. Syst. Evol. 2013;299:1107–1118. doi: 10.1007/s00606-013-0782-1. DOI
Fogelqvist J., Verkhozina A.V., Katyshev A.I., Pucholt P., Dixelius C., Rönnberg-Wästljung A.C., Lascoux M., Berlin S. Genetic and morphological evidence for introgression between three species of willows. BMC Evol. Biol. 2015;15:193. doi: 10.1186/s12862-015-0461-7. PubMed DOI PMC
Rungis D., Laivins M., Gailite A., Korica A., Lazdina D., Skipars V., Veinberga I. Genetic analysis of Latvian Salix alba L. and hybrid populations using nuclear and chloroplast DNA markers. IForest—Biogeosci. For. 2017;10:422–429. doi: 10.3832/ifor2004-009. DOI
Skvortsov A.K. Willows of Russia and Adjacent Countries: Taxonomical and Geographical Revision. University of Joensuu; Joensuu, Finland: 1999.
Argus G.W. Infrageneric classification of Salix (Salicaceae) in the New World. Syst. Bot. Monogr. 1997;52:1–121. doi: 10.2307/25096638. DOI
Trybush S., Jahodová Š., Macalpine W., Karp A. A genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections and species. BioEnergy Res. 2008;1:67–79. doi: 10.1007/s12155-008-9007-9. DOI
Wu J., Nyman T., Wang D.-C., Argus G.W., Yang Y.-P., Chen J.-H. Phylogeny of Salix subgenus Salix s.l. (Salicaceae): Delimitation, Biogeography, And Reticulate Evolution. BMC Evol. Biol. 2015;15:31. doi: 10.1186/s12862-015-0311-7. PubMed DOI PMC
Wagner N.D., Gramlich S., Hörandl E. RAD-sequencing resolved phylogenetic relationships in european shrub willows (Salix L. subg. Chamaetia and subg. Vetrix) and revealed multiple evolution of dwarf shrubs. Ecol. Evol. 2018;8:8243–8255. doi: 10.1002/ece3.4360. PubMed DOI PMC
Marchenko A.M., Kuzovkina Y.A. The ovule number variation provides new insights into taxa delimitation in willows (Salix subgen. Salix; Salicaceae) Plants. 2023;12:497. doi: 10.3390/plants12030497. PubMed DOI PMC
Belyaeva I.V., McNeill J., Orchard A.E., David J.C. Nomenclature of Salix fragilis L. and a new species, S. euxina (Salicaceae) Taxon. 2009;58:1344–1348. doi: 10.1002/tax.584021. DOI
Marchenko A.M., Kuzovkina Y.A. Notes on he nomenclature and taxonomy of Salix fragilis (Salicaceae) Taxon. 2022;71:721–732. doi: 10.1002/tax.12685. DOI
Host N.T. Salix. Volume 1 Antonius Strauss; Vienna, Austria: 1827.
Plant DNA Extraction Protocol for DArT. [(accessed on 3 January 2024)]. Available online: https://ordering.diversityarrays.com/files/DArT_DNA_isolation.pdf.
Tuskan G.A., DiFazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., Putnam N., Ralph S., Rombauts S., Salamov A., et al. The genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) Science. 2006;313:1596–1604. doi: 10.1126/science.1128691. PubMed DOI
Kopecký D., Bartoš J., Christelová P., Černoch V., Kilian A., Doležel J. Genomic constitution of Festuca × Lolium hybrids revealed by the DArTfest array. Theor. Appl. Genet. 2011;122:355–363. doi: 10.1007/s00122-010-1451-1. PubMed DOI
Gruber B., Unmack P.J., Berry O.F., Georges A. dartR: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018;18:691–699. doi: 10.1111/1755-0998.12745. PubMed DOI
Mijangos J.L., Gruber B., Berry O., Pacioni C., Georges A. dartR v2: An accessible genetic analysis platform for conservation, ecology and agriculture. Methods Ecol. Evol. 2022;13:2150–2158. doi: 10.1111/2041-210X.13918. DOI
Wickham H. ggplot2: Elegant Graphics for Data Analysis, Use R! 2nd ed. Springer; New York, NY, USA: 2016. pp. 1–213. DOI
Jombart T., Ahmed I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–3071. doi: 10.1093/bioinformatics/btr521. PubMed DOI PMC
Huson D.H., Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Earl D.A., vonHoldt B.M. STRUCTURE HARVESTER: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI
Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I. CLUMPAK: A program for identifying Clustering Modes And Packaging Population Structure Inferences Across K. Mol. Ecol. Resour. 2015;15:1179–1191. doi: 10.1111/1755-0998.12387. PubMed DOI PMC