Protective potential of outer membrane vesicles derived from a virulent strain of Francisella tularensis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
38533334
PubMed Central
PMC10963506
DOI
10.3389/fmicb.2024.1355872
Knihovny.cz E-resources
- Keywords
- FSC200, Francisella tularensis, host-pathogen interaction, outer membrane vesicles, vaccination,
- Publication type
- Journal Article MeSH
Francisella tularensis secretes tubular outer membrane vesicles (OMVs) that contain a number of immunoreactive proteins as well as virulence factors. We have reported previously that isolated Francisella OMVs enter macrophages, cumulate inside, and induce a strong pro-inflammatory response. In the current article, we present that OMVs treatment of macrophages also enhances phagocytosis of the bacteria and suppresses their intracellular replication. On the other hand, the subsequent infection with Francisella is able to revert to some extent the strong pro-inflammatory effect induced by OMVs in macrophages. Being derived from the bacterial surface, isolated OMVs may be considered a "non-viable mixture of Francisella antigens" and as such, they present a promising protective material. Immunization of mice with OMVs isolated from a virulent F. tularensis subsp. holarctica strain FSC200 prolonged the survival time but did not fully protect against the infection with a lethal dose of the parent strain. However, the sera of the immunized animals revealed unambiguous cytokine and antibody responses and proved to recognize a set of well-known Francisella immunoreactive proteins. For these reasons, Francisella OMVs present an interesting material for future protective studies.
See more in PubMed
Acevedo R., Fernández S., Zayas C., Acosta A., Sarmiento M. E., Ferro V. A., et al. . (2014). Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5:121. doi: 10.3389/fimmu.2014.00121, PMID: PubMed DOI PMC
Adriani R., Mousavi Gargari S. L., Nazarian S., Sarvary S., Noroozi N. (2018). Immunogenicity of Vibrio cholerae outer membrane vesicles secreted at various environmental conditions. Vaccine 36, 322–330. doi: 10.1016/j.vaccine.2017.09.004, PMID: PubMed DOI
Alharbi A., Rabadi S. M., Alqahtani M., Marghani D., Worden M., Ma Z., et al. . (2019). Role of peroxiredoxin of the AhpC/TSA family in antioxidant defense mechanisms of Francisella tularensis. PLoS One 14:e0213699. doi: 10.1371/journal.pone.0213699, PMID: PubMed DOI PMC
Arango Duque G., Descoteaux A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5:491. doi: 10.3389/fimmu.2014.00491, PMID: PubMed DOI PMC
Armstrong L., Jordan N., Millar A. (1996). Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes. Thorax 51, 143–149. doi: 10.1136/thx.51.2.143, PMID: PubMed DOI PMC
Avila-Calderón E. D., Ruiz-Palma M., Aguilera-Arreola M. G., Velázquez-Guadarrama N., Ruiz E. A., Gomez-Lunar Z., et al. . (2021). Outer membrane vesicles of gram-negative bacteria: an outlook on biogenesis. Front. Microbiol. 12,:557902. doi: 10.3389/fmicb.2021.557902, PMID: PubMed DOI PMC
Baker J. L., Chen L., Rosenthal J. A., Putnam D., DeLisa M. P. (2014). Microbial biosynthesis of designer outer membrane vesicles. Curr. Opin. Biotechnol. 29, 76–84. doi: 10.1016/j.copbio.2014.02.018, PMID: PubMed DOI PMC
Barbosa C. H. D., Lantier L., Reynolds J., Wang J., Re F. (2021). Critical role of IL-25-ILC2-IL-5 axis in the production of anti-Francisella LPS IgM by B1 B cells. PLoS Pathog. 17:e1009905. doi: 10.1371/journal.ppat.1009905, PMID: PubMed DOI PMC
Barker J. H., Weiss J., Apicella M. A., Nauseef W. M. (2006). Basis for the failure of Francisella tularensis lipopolysaccharide to prime human polymorphonuclear leukocytes. Infect. Immun. 74, 3277–3284. doi: 10.1128/IAI.02011-05, PMID: PubMed DOI PMC
Bauler T. J., Chase J. C., Wehrly T. D., Bosio C. M. (2014). Virulent Francisella tularensis destabilize host mRNA to rapidly suppress inflammation. J. Innate Immun. 6, 793–805. doi: 10.1159/000363243, PMID: PubMed DOI PMC
Bavlovic J., Pavkova I., Balonova L., Benada O., Stulik J., Klimentova J. (2023). Intact O-antigen is critical structure for the exceptional tubular shape of outer membrane vesicles in Francisella tularensis. Microbiol. Res. 269:127300. doi: 10.1016/j.micres.2023.127300, PMID: PubMed DOI
Bonnington K. E., Kuehn M. J. (2014). Protein selection and export via outer membrane vesicles. Biochim. Biophys. Acta BBA Mol. Cell Res. 1843, 1612–1619. doi: 10.1016/j.bbamcr.2013.12.011, PMID: PubMed DOI PMC
Bosio C. M., Bielefeldt-Ohmann H., Belisle J. T. (2007). Active suppression of the pulmonary immune response by Francisella tularensis Schu41. J. Immunol. 178, 4538–4547. doi: 10.4049/jimmunol.178.7.4538 PubMed DOI
Brudal E., Lampe E. O., Reubsaet L., Roos N., Hegna I. K., Thrane I. M., et al. . (2015). Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. Fish Shellfish Immunol. 42, 50–57. doi: 10.1016/j.fsi.2014.10.025, PMID: PubMed DOI
Caruana J. C., Walper S. A. (2020). Bacterial membrane vesicles as mediators of microbe - microbe and microbe - host community interactions. Front. Microbiol. 11:432. doi: 10.3389/fmicb.2020.00432, PMID: PubMed DOI PMC
Celli J. (2008). “Intracellular localization of Brucella abortus and Francisella tularensis in primary murine macrophages” in Bacterial pathogenesis: Methods and protocols methods in molecular biology™. eds. DeLeo F. R., Otto M. (Totowa, NJ: Humana Press; ), 133–145. PubMed
Chandler J. C., Sutherland M. D., Harton M. R., Molins C. R., Anderson R. V., Heaslip D. G., et al. . (2015). Francisella tularensis LVS surface and membrane proteins as targets of effective post-exposure immunization for tularemia. J. Proteome Res. 14, 664–675. doi: 10.1021/pr500628k, PMID: PubMed DOI PMC
Chen S., Lei Q., Zou X., Ma D. (2023). The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front. Immunol. 14:1157813. doi: 10.3389/fimmu.2023.1157813, PMID: PubMed DOI PMC
Chen L., Valentine J. L., Huang C.-J., Endicott C. E., Moeller T. D., Rasmussen J. A., et al. . (2016). Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc. Natl. Acad. Sci. USA 113, E3609–E3618. doi: 10.1073/pnas.1518311113, PMID: PubMed DOI PMC
Chu P., Cunningham A. L., Yu J.-J., Nguyen J. Q., Barker J. R., Lyons C. R., et al. . (2014). Live attenuated Francisella novicida vaccine protects against Francisella tularensis pulmonary challenge in rats and non-human Primates. PLoS Pathog. 10:e1004439. doi: 10.1371/journal.ppat.1004439, PMID: PubMed DOI PMC
Clemens D. L., Horwitz M. A. (2007). Uptake and intracellular fate of Francisella tularensis in human macrophages. Ann. N. Y. Acad. Sci. 1105, 160–186. doi: 10.1196/annals.1409.001 PubMed DOI
Clemens D. L., Lee B.-Y., Horwitz M. A. (2018). The Francisella type VI secretion system. Front. Cell. Infect. Microbiol. 8:121. doi: 10.3389/fcimb.2018.00121, PMID: PubMed DOI PMC
Cole L. E., Mann B. J., Shirey K. A., Richard K., Yang Y., Gearhart P. J., et al. . (2011). Role of TLR signaling in Francisella tularensis-LPS-induced, antibody-mediated protection against Francisella tularensis challenge. J. Leukoc. Biol. 90, 787–797. doi: 10.1189/jlb.0111014 PubMed DOI PMC
Cowley S. C., Elkins K. L. (2011). Immunity to Francisella. Front. Microbiol. 2:26. doi: 10.3389/fmicb.2011.00026, PMID: PubMed DOI PMC
Dotson R. J., Rabadi S. M., Westcott E. L., Bradley S., Catlett S. V., Banik S., et al. . (2013). Repression of inflammasome by Francisella tularensis during early stages of infection. J. Biol. Chem. 288, 23844–23857. doi: 10.1074/jbc.M113.490086, PMID: PubMed DOI PMC
Duell B. L., Tan C. K., Carey A. J., Wu F., Cripps A. W., Ulett G. C. (2012). Recent insights into microbial triggers of interleukin-10 production in the host and the impact on infectious disease pathogenesis. FEMS Immunol. Med. Microbiol. 64, 295–313. doi: 10.1111/j.1574-695X.2012.00931.x, PMID: PubMed DOI
Dueñas A. I., Aceves M., Orduña A., Díaz R., Sánchez Crespo M., García-Rodríguez C. (2006). Francisella tularensis LPS induces the production of cytokines in human monocytes and signals via toll-like receptor 4 with much lower potency than E. coli LPS. Int. Immunol. 18, 785–795. doi: 10.1093/intimm/dxl015 PubMed DOI
Edwards J. A., Rockx-Brouwer D., Nair V., Celli J. (2010). Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN-γ activation of macrophages. Microbiology 156, 327–339. doi: 10.1099/mic.0.031716-0, PMID: PubMed DOI PMC
Elkins K. L., Cowley S. C., Bosio C. M. (2007). Innate and adaptive immunity to Francisella. Ann. N. Y. Acad. Sci. 1105, 284–324. doi: 10.1196/annals.1409.014 PubMed DOI
Eyles J. E., Unal B., Hartley M. G., Newstead S. L., Flick-Smith H., Prior J. L., et al. . (2007). Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7, 2172–2183. doi: 10.1002/pmic.200600985, PMID: PubMed DOI
Fabrik I., Link M., Putzova D., Plzakova L., Lubovska Z., Philimonenko V., et al. . (2018). The early dendritic cell signaling induced by virulent Francisella tularensis strain occurs in phases and involves the activation of extracellular signal-regulated kinases (ERKs) and p38 in the later stage. Mol. Cell. Proteom. 17, 81–94. doi: 10.1074/mcp.RA117.000160, PMID: PubMed DOI PMC
Furuya Y., Kirimanjeswara G. S., Roberts S., Metzger D. W. (2013). Increased susceptibility of IgA-deficient mice to pulmonary Francisella tularensis live vaccine strain infection. Infect. Immun. 81, 3434–3441. doi: 10.1128/IAI.00408-13, PMID: PubMed DOI PMC
Gaur R., Alam S. I., Kamboj D. V. (2017). Immunoproteomic analysis of antibody response of rabbit host against heat-killed Francisella tularensis live vaccine strain. Curr. Microbiol. 74, 499–507. doi: 10.1007/s00284-017-1217-y PubMed DOI
Gerritzen M. J. H., Salverda M. L. M., Martens D. E., Wijffels R. H., Stork M. (2019). Spontaneously released Neisseria meningitidis outer membrane vesicles as vaccine platform: production and purification. Vaccine 37, 6978–6986. doi: 10.1016/j.vaccine.2019.01.076, PMID: PubMed DOI
Gill S., Catchpole R., Forterre P. (2018). Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol. Rev. 43, 273–303. doi: 10.1093/femsre/fuy042, PMID: PubMed DOI PMC
Gnopo Y. M. D., Watkins H. C., Stevenson T. C., DeLisa M. P., Putnam D. (2017). Designer outer membrane vesicles as immunomodulatory systems – reprogramming bacteria for vaccine delivery. Adv. Drug Deliv. Rev. 114, 132–142. doi: 10.1016/j.addr.2017.05.003, PMID: PubMed DOI
Golovliov I., Sjöstedt A., Mokrievich A., Pavlov V. (2003). A method for allelic replacement in Francisella tularensis. FEMS Microbiol. Lett. 222, 273–280. doi: 10.1016/S0378-1097(03)00313-6 PubMed DOI
Golovliov I., Twine S. M., Shen H., Sjostedt A., Conlan W. (2013). A ΔclpB mutant of Francisella tularensis subspecies holarctica strain, FSC200, is a more effective live vaccine than F. tularensis LVS in a mouse respiratory challenge model of tularemia. PLoS One 8:e78671. doi: 10.1371/journal.pone.0078671, PMID: PubMed DOI PMC
Gorringe A. R., Pajón R. (2012). Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum. Vaccin. Immunother. 8, 174–183. doi: 10.4161/hv.18500 PubMed DOI
Havlasová J., Hernychová L., Brychta M., Hubálek M., Lenco J., Larsson P., et al. . (2005). Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics 5, 2090–2103. doi: 10.1002/pmic.200401123, PMID: PubMed DOI
Hazlett K. R. O., Caldon S. D., McArthur D. G., Cirillo K. A., Kirimanjeswara G. S., Magguilli M. L., et al. . (2008). Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect. Immun. 76, 4479–4488. doi: 10.1128/IAI.00610-08, PMID: PubMed DOI PMC
Hickey A. J., Hazlett K. R. O., Kirimanjeswara G. S., Metzger D. W. (2011). Identification of Francisella tularensis outer membrane protein a (FopA) as a protective antigen for tularemia. Vaccine 29, 6941–6947. doi: 10.1016/j.vaccine.2011.07.075, PMID: PubMed DOI PMC
Huntley J. F., Conley P. G., Hagman K. E., Norgard M. V. (2007). Characterization of Francisella tularensis outer membrane proteins. J. Bacteriol. 189, 561–574. doi: 10.1128/JB.01505-06, PMID: PubMed DOI PMC
Huntley J. F., Conley P. G., Rasko D. A., Hagman K. E., Apicella M. A., Norgard M. V. (2008). Native outer membrane proteins protect mice against pulmonary challenge with virulent type a Francisella tularensis. Infect. Immun. 76, 3664–3671. doi: 10.1128/IAI.00374-08, PMID: PubMed DOI PMC
Janovská S., Pávková I., Reichelová M., Hubáleka M., Stulík J., Macela A. (2007). Proteomic analysis of antibody response in a case of laboratory-acquired infection with Francisella tularensis subsp. tularensis. Folia Microbiol. (Praha) 52, 194–198. doi: 10.1007/BF02932159, PMID: PubMed DOI
Jung A. L., Stoiber C., Herkt C. E., Schulz C., Bertrams W., Schmeck B. (2016). Legionella pneumophila-derived outer membrane vesicles promote bacterial replication in macrophages. PLoS Pathog. 12:e1005592. doi: 10.1371/journal.ppat.1005592, PMID: PubMed DOI PMC
Kaparakis-Liaskos M., Ferrero R. L. (2015). Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15, 375–387. doi: 10.1038/nri3837 PubMed DOI
Klimentova J., Pavkova I., Horcickova L., Bavlovic J., Kofronova O., Benada O., et al. . (2019). Francisella tularensis subsp. holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Front. Microbiol. 10:2304. doi: 10.3389/fmicb.2019.02304, PMID: PubMed DOI PMC
Klimentova J., Rehulka P., Pavkova I., Kubelkova K., Bavlovic J., Stulik J. (2021). Cross-species proteomic comparison of outer membrane vesicles and membranes of Francisella tularensis subsp. tularensis versus subsp. holarctica. J. Proteome Res. 20, 1716–1732. doi: 10.1021/acs.jproteome.0c00917 PubMed DOI
Krishnan N., Kubiatowicz L. J., Holay M., Zhou J., Fang R. H., Zhang L. (2022). Bacterial membrane vesicles for vaccine applications. Adv. Drug Deliv. Rev. 185:114294. doi: 10.1016/j.addr.2022.114294 PubMed DOI
Kurtz S. L., Chou A. Y., Kubelkova K., Cua D. J., Elkins K. L. (2014). IL-23 p19 knockout mice exhibit minimal defects in responses to primary and secondary infection with Francisella tularensis LVS. PLoS One 9:e109898. doi: 10.1371/journal.pone.0109898, PMID: PubMed DOI PMC
Kurtz S. L., Foreman O., Bosio C. M., Anver M. R., Elkins K. L. (2013). Interleukin-6 is essential for primary resistance to Francisella tularensis live vaccine strain infection. Infect. Immun. 81, 585–597. doi: 10.1128/IAI.01249-12, PMID: PubMed DOI PMC
Laws T. R., Clark G., D’Elia R. V. (2013). Differential role for interleukin-6 during Francisella tularensis infection with virulent and vaccine strains. Infect. Immun. 81, 3055–3056. doi: 10.1128/IAI.00234-13, PMID: PubMed DOI PMC
Lee W.-H., Choi H.-I., Hong S.-W., Kim K., Gho Y. S., Jeon S. G. (2015). Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Exp. Mol. Med. 47:e183. doi: 10.1038/emm.2015.59, PMID: PubMed DOI PMC
Liu H., Zhang Q., Wang S., Weng W., Jing Y., Su J. (2021). Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact. Mater. 14, 169–181. doi: 10.1016/j.bioactmat.2021.12.006, PMID: PubMed DOI PMC
Manning A. J., Kuehn M. J. (2013). Functional advantages conferred by extracellular prokaryotic membrane vesicles. J. Mol. Microbiol. Biotechnol. 23, 131–141. doi: 10.1159/000346548, PMID: PubMed DOI PMC
McCaig W. D., Koller A., Thanassi D. G. (2013). Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. J. Bacteriol. 195, 1120–1132. doi: 10.1128/JB.02007-12, PMID: PubMed DOI PMC
Meibom K. L., Charbit A. (2010). The unraveling panoply of Francisella tularensis virulence attributes. Curr. Opin. Microbiol. 13, 11–17. doi: 10.1016/j.mib.2009.11.007, PMID: PubMed DOI
Mertes V., Bekkelund A. K., Lagos L., Ciani E., Colquhoun D., Haslene-Hox H., et al. . (2021). The use of extracellular membrane vesicles for immunization against Francisellosis in Nile Tilapia (Oreochromis niloticus) and Atlantic cod (Gadus morhua L.). Vaccine 9:34. doi: 10.3390/vaccines9010034, PMID: PubMed DOI PMC
Metzger D. W., Salmon S. L., Kirimanjeswara G. (2013). Differing effects of interleukin-10 on cutaneous and pulmonary Francisella tularensis live vaccine strain infection. Infect. Immun. 81, 2022–2027. doi: 10.1128/IAI.00024-13, PMID: PubMed DOI PMC
Micoli F., MacLennan C. A. (2020). Outer membrane vesicle vaccines. Semin. Immunol. 50:101433. doi: 10.1016/j.smim.2020.101433 PubMed DOI
Micoli F., Rondini S., Alfini R., Lanzilao L., Necchi F., Negrea A., et al. . (2018). Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proc. Natl. Acad. Sci. 115, 10428–10433. doi: 10.1073/pnas.1807655115, PMID: PubMed DOI PMC
Nicol M. J., Williamson D. R., Place D. E., Kirimanjeswara G. S. (2021). Differential immune response following intranasal and intradermal infection with Francisella tularensis: implications for vaccine development. Microorganisms 9:973. doi: 10.3390/microorganisms9050973, PMID: PubMed DOI PMC
O’Ryan M., Stoddard J., Toneatto D., Wassil J., Dull P. M. (2014). A multi-component meningococcal serogroup B vaccine (4CMenB): the clinical development program. Drugs 74, 15–30. doi: 10.1007/s40265-013-0155-7, PMID: PubMed DOI PMC
Park K.-S., Svennerholm K., Crescitelli R., Lässer C., Gribonika I., Lötvall J. (2021). Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy. J. Extracell. Vesicles 10:e12120. doi: 10.1002/jev2.12120, PMID: PubMed DOI PMC
Parsa K. V. L., Butchar J. P., Rajaram M. V. S., Cremer T. J., Gunn J. S., Schlesinger L. S., et al. . (2008). Francisella gains a survival advantage within mononuclear phagocytes by suppressing the host IFNγ response. Mol. Immunol. 45, 3428–3437. doi: 10.1016/j.molimm.2008.04.006, PMID: PubMed DOI PMC
Pavkova I., Brychta M., Straskova A., Schmidt M., Macela A., Stulik J. (2013). Comparative proteome profiling of host–pathogen interactions: insights into the adaptation mechanisms of Francisella tularensis in the host cell environment. Appl. Microbiol. Biotechnol. 97, 10103–10115. doi: 10.1007/s00253-013-5321-z, PMID: PubMed DOI
Pavkova I., Klimentova J., Bavlovic J., Horcickova L., Kubelkova K., Vlcak E., et al. . (2021). Francisella tularensis outer membrane vesicles participate in the early phase of interaction with macrophages. Front. Microbiol. 12:3065. doi: 10.3389/fmicb.2021.748706, PMID: PubMed DOI PMC
Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. . (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552. doi: 10.1093/nar/gkab1038, PMID: PubMed DOI PMC
Pierson T., Matrakas D., Taylor Y. U., Manyam G., Morozov V. N., Zhou W., et al. . (2011). Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. J. Proteome Res. 10, 954–967. doi: 10.1021/pr1009756, PMID: PubMed DOI
Pollak C. N., Delpino M. V., Fossati C. A., Baldi P. C. (2012). Outer membrane vesicles from Brucella abortus promote bacterial internalization by human monocytes and modulate their innate immune response. PLoS One 7:e50214. doi: 10.1371/journal.pone.0050214, PMID: PubMed DOI PMC
Post D. M. B., Slütter B., Schilling B., Chande A. T., Rasmussen J. A., Jones B. D., et al. . (2017). Characterization of inner and outer membrane proteins from Francisella tularensis strains LVS and Schu S4 and identification of potential subunit vaccine candidates. MBio 8, 1–11. doi: 10.1128/mBio.01592-17 PubMed DOI PMC
Prados-Rosales R., Baena A., Martinez L. R., Luque-Garcia J., Kalscheuer R., Veeraraghavan U., et al. . (2011). Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J. Clin. Invest. 121, 1471–1483. doi: 10.1172/JCI44261 PubMed DOI PMC
Proteome 2D-PAGE Database (2023). Available at: https://protein.mpiib-berlin.mpg.de/cgi-bin/pdbs/2d-page/extern/index.cgi (Accessed November 22, 2023).
Putzova D., Panda S., Härtlova A., Stulík J., Gekara N. O. (2017). Subversion of innate immune responses by Francisella involves the disruption of TRAF3 and TRAF6 signalling complexes. Cell. Microbiol. 19. doi: 10.1111/cmi.12769 PubMed DOI
Rastawicki W., Rokosz-Chudziak N., Wolaniuk N. (2014). Serum immunoglobulin IgG subclass distribution of antibody responses to Francisella tularensis in patients with tularemia. Med. Dosw. Mikrobiol. 66, 11–15. PMID: PubMed
Roier S., Leitner D. R., Iwashkiw J., Schild-Prüfert K., Feldman M. F., Krohne G., et al. . (2012). Intranasal immunization with nontypeable Haemophilus influenzae outer membrane vesicles induces cross-protective immunity in mice. PLoS One 7:e42664. doi: 10.1371/journal.pone.0042664, PMID: PubMed DOI PMC
Santos J. C., Dick M. S., Lagrange B., Degrandi D., Pfeffer K., Yamamoto M., et al. . (2018). LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. EMBO J. 37:e98089. doi: 10.15252/embj.201798089, PMID: PubMed DOI PMC
Sharma J., Mishra B. B., Li Q., Teale J. M. (2011). TLR4-dependent activation of inflammatory cytokine response in macrophages by Francisella elongation factor Tu. Cell. Immunol. 269, 69–73. doi: 10.1016/j.cellimm.2011.03.023, PMID: PubMed DOI PMC
Skyberg J. A., Rollins M. F., Samuel J. W., Sutherland M. D., Belisle J. T., Pascual D. W. (2013). Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type a strain. Infect. Immun. 81, 3099–3105. doi: 10.1128/IAI.00203-13, PMID: PubMed DOI PMC
Steiner D. J., Furuya Y., Metzger D. W. (2014). Host–pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect. Drug Resist. 7, 239–251. doi: 10.2147/IDR.S53700, PMID: PubMed DOI PMC
Sundaresh S., Randall A., Unal B., Petersen J. M., Belisle J. T., Gill Hartley M., et al. . (2007). From protein microarrays to diagnostic antigen discovery: a study of the pathogen Francisella tularensis. Bioinformatics 23, i508–i518. doi: 10.1093/bioinformatics/btm207, PMID: PubMed DOI
Sutherland M. D., Goodyear A. W., Troyer R. M., Chandler J. C., Dow S. W., Belisle J. T. (2012). Post-exposure immunization against Francisella tularensis membrane proteins augments protective efficacy of gentamicin in a mouse model of pneumonic tularemia. Vaccine 30, 4977–4982. doi: 10.1016/j.vaccine.2012.05.037, PMID: PubMed DOI PMC
Twine S. M., Petit M. D., Fulton K. M., House R. V., Conlan J. W. (2010). Immunoproteomics analysis of the murine antibody response to vaccination with an improved Francisella tularensis live vaccine strain (LVS). PLoS One 5:e10000. doi: 10.1371/journal.pone.0010000, PMID: PubMed DOI PMC
Twine S. M., Petit M. D., Shen H., Mykytczuk N. C. S., Kelly J. F., Conlan J. W. (2006). Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-Francisella vaccines. Biochem. Biophys. Res. Commun. 346, 999–1008. doi: 10.1016/j.bbrc.2006.06.008, PMID: PubMed DOI
Wallet P., Benaoudia S., Mosnier A., Lagrange B., Martin A., Lindgren H., et al. . (2017). IFN-γ extends the immune functions of guanylate binding proteins to inflammasome-independent antibacterial activities during Francisella novicida infection. PLoS Pathog. 13:e1006630. doi: 10.1371/journal.ppat.1006630, PMID: PubMed DOI PMC
Wang X., Singh A. K., Zhang X., Sun W. (2020). Induction of protective Antiplague immune responses by self-Adjuvanting bionanoparticles derived from engineered Yersinia pestis. Infect. Immun. 88, e00081–e00020. doi: 10.1128/IAI.00081-20, PMID: PubMed DOI PMC