Evaluation of Differential Diagnostics Potential of Uniform Data Set 2 Neuropsychology Battery Using Alzheimer's Disease Biomarkers
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
22-33968S
Czech Science Foundation
PubMed
38582748
PubMed Central
PMC11504696
DOI
10.1093/arclin/acae028
PII: 7641742
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Assessment, Mild cognitive impairment,
- MeSH
- Alzheimerova nemoc * diagnóza mozkomíšní mok MeSH
- amyloidní beta-protein mozkomíšní mok MeSH
- biologické markery * mozkomíšní mok MeSH
- diferenciální diagnóza MeSH
- kognitivní dysfunkce * diagnóza etiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- neuropsychologické testy * normy statistika a číselné údaje MeSH
- proteiny tau mozkomíšní mok MeSH
- průřezové studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amyloidní beta-protein MeSH
- biologické markery * MeSH
- proteiny tau MeSH
OBJECTIVE: This study aims to evaluate the efficacy of the Uniform Data Set (UDS) 2 battery in distinguishing between individuals with mild cognitive impairment (MCI) attributable to Alzheimer's disease (MCI-AD) and those with MCI due to other causes (MCI-nonAD), based on contemporary AT(N) biomarker criteria. Despite the implementation of the novel UDS 3 battery, the UDS 2 battery is still used in several non-English-speaking countries. METHODS: We employed a cross-sectional design. A total of 113 Czech participants with MCI underwent a comprehensive diagnostic assessment, including cerebrospinal fluid biomarker evaluation, resulting in two groups: 45 individuals with prodromal AD (A+T+) and 68 participants with non-Alzheimer's pathological changes or normal AD biomarkers (A-). Multivariable logistic regression analyses were employed with neuropsychological test scores and demographic variables as predictors and AD status as an outcome. Model 1 included UDS 2 scores that differed between AD and non-AD groups (Logical Memory delayed recall), Model 2 employed also Letter Fluency and Rey's Auditory Verbal Learning Test (RAVLT). The two models were compared using area under the receiver operating characteristic curves. We also created separate logistic regression models for each of the UDS 2 scores. RESULTS: Worse performance in delayed recall of Logical Memory significantly predicted the presence of positive AD biomarkers. In addition, the inclusion of Letter Fluency RAVLT into the model significantly enhanced its discriminative capacity. CONCLUSION: Our findings demonstrate that using Letter Fluency and RAVLT alongside the UDS 2 battery can enhance its potential for differential diagnostics.
Department of Clinical Psychology Motol University Hospital 150 06 Prague Czech Republic
Department of Neurology 1st Faculty of Medicine Charles University 121 08 Prague Czech Republic
Department of Psychology Faculty of Arts Charles University 116 38 Prague Czech Republic
Zobrazit více v PubMed
Benson, G., deFelipe, J., & Sano, M. (2014). Performance of Spanish-speaking community-dwelling elders in the United States on the Uniform Data Set. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10(5 Suppl), S338–S343. 10.1016/j.jalz.2013.09.002. PubMed DOI PMC
Besser, L., Kukull, W., Knopman, D., Chui, H., Galasko, D., Weintraub, S., et al. (2018). Version 3 of the National Alzheimer’s Coordinating Center’s Uniform Data Set. Alzheimer Disease & Associated Disorders, 32(4), 351–358. 10.1097/WAD.0000000000000279. PubMed DOI PMC
Besser, L., Litvan, I., Monsell, S., Mock, C., Weintraub, S., Zhou, X., et al. (2016). Mild cognitive impairment in Parkinson’s disease versus Alzheimer’s disease. Parkinsonism and Related Disorders, 27, 54–60. 10.1016/j.parkreldis.2016.04.007. PubMed DOI PMC
Bezdicek, O., Lukavsky, J., Stepankova, H., Nikolai, T., Axelrod, B. N., Michalec, J., et al. (2015). The Prague Stroop Test: Normative standards in older Czech adults and discriminative validity for mild cognitive impairment in Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology, 37(8), 794–807. 10.1080/13803395.2015.1057106. PubMed DOI
Bezdicek, O., Stepankova, H., Moták, L., Axelrod, B. N., Woodard, J. L., Preiss, M., et al. (2014). Czech version of Rey Auditory Verbal Learning test: Normative data. Aging Neuropsychology and Cognition, 21(6), 693–721. 10.1080/13825585.2013.865699. PubMed DOI
Blennow, K., Mattsson, N., Schöll, M., Hansson, O., & Zetterberg, H. (2015). Amyloid biomarkers in Alzheimer’s disease. Trends in Pharmacological Sciences, 36(5), 297–309. 10.1016/j.tips.2015.03.002. PubMed DOI
Bruno, D., Zinkunegi, A. J., Kollmorgen, G., Carboni, M., Wild, N., Carlsson, C., et al. (2023). A comparison of diagnostic performance of word-list and story recall tests for biomarker-determined Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 45(8), 763–769. 10.1080/13803395.2023.2240060. PubMed DOI PMC
Cernochova, D., Goldmann, P., Kral, P., Soukupova, T., Snorek, V., & Havluj, V. (2010). WAIS-III: Wechslerova inteligenční škála pro dospělé. Testcentrum.
De Simone, M. S., Perri, R., Fadda, L., De Tollis, M., Turchetta, C. S., Caltagirone, C., et al. (2017). Different deficit patterns on word lists and short stories predict conversion to Alzheimer’s disease in patients with amnestic mild cognitive impairment. Journal of Neurology, 264(11), 2258–2267. 10.1007/s00415-017-8623-8. PubMed DOI
Dominguez, J. C., Phung, T. K. T., deGuzman, M. F. P., Fowler, K. C., Reandelar Jr, M., Natividad, B., et al. (2019). Determining Filipino normative data for a battery of neuropsychological tests: The Filipino Norming Project (FNP). Dementia and Geriatric Cognitive Disorders Extra, 9(2), 260–270. 10.1159/000500519. PubMed DOI PMC
Drozdova, K., Stepankova, H., Lukavsky, J., Bezdicek, O., & Kopecek, M. (2015). Normative data for the Rey-Osterrieth Complex Figure Test in older Czech adults. Ceska a slovenska neurologie a neurochirurgie, 78(5), 542–549.
Forman, M., Farmer, J., Johnson, J., Clark, C., Arnold, S., Coslett, H., et al. (2006). Frontotemporal dementia: Clinicopathological correlations. Annals of Neurology, 59(6), 952–962. 10.1002/ana.20873. PubMed DOI PMC
Galvin, J., Chrisphonte, S., Cohen, I., Greenfield, K., Kleiman, M., Moore, C., et al. (2021). Characterization of dementia with Lewy bodies (DLB) and mild cognitive impairment using the Lewy body dementia module (LBD-MOD). Alzheimers & Dementia, 17(10), 1675–1686. 10.1002/alz.12334. PubMed DOI PMC
Gefen, T., Teylan, M., Besser, L., Pollner, E., Moshkovich, A., & Weintraub, S. (2020). Measurement and characterization of distinctive clinical phenotypes using the Frontotemporal Lobar Degeneration Module (FTLD-MOD). Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 16(6), 918–925. 10.1002/alz.12098. PubMed DOI PMC
Gobom, J., Parnetti, L., Rosa-Neto, P., Vyhnalek, M., Gauthier, S., Cataldi, S., et al. (2021). Validation of the LUMIPULSE automated immunoassay for the measurement of core AD biomarkers in cerebrospinal fluid. Clinical Chemistry and Laboratory Medicine, 60(2), 207–219. 10.1515/cclm-2021-0651. PubMed DOI
Grossman, M., Libon, D., Forman, M., Massimo, L., Wood, E., Moore, P., et al. (2007). Distinct antemortem profiles in patients with pathologically defined frontotemporal dementia. Archives of Neurology, 64(11), 1601–1609. 10.1001/archneur.64.11.1601. PubMed DOI
Grossman, M., Xie, S. X., Libon, D. J., Wang, X., Massimo, L., Moore, P., et al. (2008). Longitudinal decline in autopsy-defined frontotemporal lobar degeneration. Neurology, 70(22), 2036–2045. 10.1212/01.wnl.0000303816.25065.bc. PubMed DOI PMC
Havlík, F., Mana, J., Dušek, P., Jech, R., Růžička, E., Kopeček, M., et al. (2020). Brief Visuospatial Memory Test-Revised: Normative data and clinical utility of learning indices in Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology, 42(10), 1099–1110. 10.1080/13803395.2020.1845303. PubMed DOI
Heissler, R., Cervenkova, M., Kopecek, M., & Georgi, H. (2020). Geriatric Depression Scale (GDS-15): Czech normative study. Ceskoslovenska psychologie, 64(1), 49–65.
Hildebrandt, H., Fink, F., Kastrup, A., Haupts, M., & Eling, P. (2013). Cognitive profiles of patients with mild cognitive impairment or dementia in Alzheimer’s or Parkinson’s disease. Dementia and Geriatric Cognitive Disorders Extra, 3(1), 102–112. 10.1159/000348350. PubMed DOI PMC
Jack, C., Bennett, D., Blennow, K., Carrillo, M., Dunn, B., Haeberlein, S., et al. (2018). NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers & Dementia, 14(4), 535–562. 10.1016/j.jalz.2018.02.018. PubMed DOI PMC
Kamaradova, D., Prasko, J., Latalova, K., Panackova, L., Svancara, J., Ociskova, M., et al. (2016). Validation of Czech version of Beck Anxiety Inventory. Ceska A Slovenska Psychiatrie, 112(4), 153–158.
Mansbach, W. E., Mace, R. A., & Clark, K. M. (2014). Story recall and word lists: Differential and combined utilities in predicting cognitive diagnosis. Journal of Clinical and Experimental Neuropsychology, 36(6), 569–576. 10.1080/13803395.2014.916656. PubMed DOI
Markova, H., Fendrych Mazancova, A., Jester, D. J., Cechova, K., Matuskova, V., Nikolai, T., et al. (2023). Memory binding test and its associations with hippocampal volume across the cognitive continuum preceding dementia. Assessment, 30(3), 856–872. 10.1177/10731911211069676. PubMed DOI
Marra, C., Piccininni, C., Masone Iacobucci, G., Caprara, A., Gainotti, G., Costantini, E., et al. (2021). Semantic memory as an early cognitive marker of Alzheimer’s disease: Role of category and phonological verbal fluency tasks. Journal of Alzheimer’s Disease, 81(2), 619–627. 10.3233/JAD-201452. PubMed DOI
Mazancova, A. F., Nikolai, T., Stepankova, H., Kopecek, M., & Bezdicek, O. (2017). The reliability of clock drawing test scoring systems modeled on the normative data in healthy aging and nonamnestic mild cognitive impairment. Assessment, 24(7), 945–957. 10.1177/1073191116632586. PubMed DOI
Mitchell, A. (2009). A meta-analysis of the accuracy of the Mini-Mental State Examination in the detection of dementia and mild cognitive impairment. Journal of Psychiatric Research, 43(4), 411–431. 10.1016/j.jpsychires.2008.04.014. PubMed DOI
Morris, J., Weintraub, S., Chui, H., Cummings, J., DeCarli, C., Ferris, S., et al. (2006). The Uniform Data Set (UDS): Clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Disease & Associated Disorders, 20(4), 210–216. 10.1097/01.wad.0000213865.09806.92. PubMed DOI
Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., vanBelle, G., Fillenbaum, G., et al. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165. 10.1212/wnl.39.9.1159. PubMed DOI
Nikolai, T., Stepankova, H., Kopecek, M., Sulc, Z., Vyhnalek, M., Bezdicek, O., et al. (2018). The Uniform Data Set, Czech version: Normative data in older adults from an international perspective. Journal of Alzheimer’s Disease, 61(3), 1233–1240. 10.3233/JAD-170595. PubMed DOI PMC
Nikolai, T., Štěpánková, H., Michalec, J., Bezdíček, O., Horáková, K., Marková, H., et al. (2015). Tests of verbal fluency, Czech normative study in older patients. Česká a slovenská neurologie a neurochirurgie, 78/111(3), 292–299. 10.14735/amcsnn2015292. DOI
Ophey, A., Wolfsgruber, S., Roeske, S., Polcher, A., Spottke, A., Frölich, L., et al. (2021). Cognitive profiles of patients with mild cognitive impairment due to Alzheimer’s versus Parkinson’s disease defined using a base rate approach: Implications for neuropsychological assessments. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1), e12223. 10.1002/dad2.12223. PubMed DOI PMC
Perri, R., Fadda, L., Caltagirone, C., & Carlesimo, G. (2013). Word list and story recall elicit different patterns of memory deficit in patients with Alzheimer’s disease, frontotemporal dementia, subcortical ischemic vascular disease, and Lewy body dementia. Journal of Alzheimer’s Disease, 37(1), 99–107. 10.3233/JAD-130347. PubMed DOI
van der Ploeg, T., Austin, P. C., & Steyerberg, E. W. (2014). Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology, 14(1), 137. 10.1186/1471-2288-14-137. PubMed DOI PMC
R Core Team . (2023). R: A language and environment for statistical computing (version 4.3.1) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/.
Rabin, L. A., Paré, N., Saykin, A. J., Brown, M. J., Wishart, H. A., Flashman, L. A., et al. (2009). Differential memory test sensitivity for diagnosing amnestic mild cognitive impairment and predicting conversion to Alzheimer’s disease. Aging, Neuropsychology, and Cognition, 16(3), 357–376. 10.1080/13825580902825220. PubMed DOI PMC
Rahman-Filipiak, A., Sadaghiyani, S., Davis, K., Bhaumik, A., Paulson, H., Giordani, B., et al. (2022). Validation of the National Alzheimer’s Coordinating Center (NACC) Lewy Body Disease Module neuropsychological tests. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 14(1), e12279. 10.1002/dad2.12279. PubMed DOI PMC
Rascovsky, K., Salmon, D., Hansen, L., Thal, L., & Galasko, D. (2007). Disparate letter and semantic category fluency deficits in autopsy-confirmed frontotemporal dementia and Alzheimer’s disease. Neuropsychology, 21(1), 20–30. 10.1037/0894-4105.21.1.20. PubMed DOI
Reul, S., Lohmann, H., Wiendl, H., Duning, T., & Johnen, A. (2017). Can cognitive assessment really discriminate early stages of Alzheimer’s and behavioural variant frontotemporal dementia at initial clinical presentation? Alzheimer’s Research & Therapy, 9(1), 61. 10.1186/s13195-017-0287-1. PubMed DOI PMC
Ritter, A., Leger, G., Miller, J., & Banks, S. (2017). Neuropsychological testing in pathologically verified Alzheimer disease and frontotemporal dementia. Alzheimer Disease & Associated Disorders, 31(3), 187–191. 10.1097/WAD.0000000000000181. PubMed DOI PMC
Rogers, T. T., Ivanoiu, A., Patterson, K., & Hodges, J. R. (2006). Semantic memory in Alzheimer’s disease and the frontotemporal dementias. Neuropsychology, 20(3), 319–335. 10.1037/0894-4105.20.3.319. PubMed DOI
Ruan, Q., Xiao, F., Gong, K., Zhang, W., Zhang, M., Ruan, J., et al. (2020). Demographically corrected normative Z scores on the neuropsychological test battery in cognitively normal older Chinese adults. Dementia and Geriatric Cognitive Disorders, 49(4), 375–383. 10.1159/000505618. PubMed DOI
Sheardova, K., Vyhnalek, M., Nedelska, Z., Laczo, J., Andel, R., Marciniak, R., et al. (2019). Czech Brain Aging Study (CBAS): Prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open, 9(12), e030379. 10.1136/bmjopen-2019-030379. PubMed DOI PMC
Staffaroni, A., Weintraub, S., Rascovsky, K., Rankin, K., Taylor, J., Fields, J., et al. (2021). Uniform data set language measures for bvFTD and PPA diagnosis and monitoring. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1), e12148. 10.1002/dad2.12148. PubMed DOI PMC
Steenland, K., Macneil, J., Bartell, S., & Lah, J. (2010). Analyses of diagnostic patterns at 30 Alzheimer’s Disease Centers in the US. Neuroepidemiology, 35(1), 19–27. 10.1159/000302844. PubMed DOI PMC
UDSv4 Updates (2024). Naccdata.org. https://naccdata.org/nacc-collaborations/uds4-updates
Vonk, J. M. J., Rizvi, B., Lao, P. J., Budge, M., Manly, J. J., Mayeux, R., et al. (2019). Letter and category fluency performance correlates with distinct patterns of cortical thickness in older adults. Cerebral Cortex, 29(6), 2694–2700. 10.1093/cercor/bhy138. PubMed DOI PMC
Vyhnalek, M., Jester, D. J., Andel, R., Horakova, H., Nikolai, T., Laczó, J., et al. (2022). Contribution of memory tests to early identification of conversion from amnestic mild cognitive impairment to dementia. Journal of Alzheimer’s Disease, 88(4), 1397–1409. 10.3233/JAD-215364. PubMed DOI PMC
Vyhnalek, M., Marková, H., Laczó, J., De Beni, R., & Di Nuovo, S. (2019). Assessment of memory impairment in early diagnosis of Alzheimer’s disease. Current Alzheimer Research, 16(11), 975–985. 10.2174/1567205016666191113125303. PubMed DOI
Weintraub, S., Besser, L., Dodge, H., Teylan, M., Ferris, S., Goldstein, F., et al. (2018). Version 3 of the Alzheimer Disease Centers’ Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Disease & Associated Disorders, 32(1), 10–17. 10.1097/WAD.0000000000000223. PubMed DOI PMC
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-radford, N. R., Chui, H., et al. (2009). The Alzheimer’s Disease Centers’ Uniform Data Set (UDS). Alzheimer Disease and Associated Disorders, 23(2), 91–101. 10.1097/WAD.0b013e318191c7dd. PubMed DOI PMC
Wicklund, A. H., Johnson, N., Rademaker, A., Weitner, B. B., & Weintraub, S. (2006). Word list versus story memory in Alzheimer disease and frontotemporal dementia. Alzheimer Disease and Associated Disorders, 20(2), 86–92. 10.1097/01.wad.0000213811.97305.49 PubMed DOI
Wong, C. G., Jeffers, S. L., Bell, S. A., Caldwell, J. Z. K., Banks, S. J., & Miller, J. B. (2022). Story Memory Impairment Rates and Association with Hippocampal Volumes in a Memory Clinic Population. Journal of the International Neuropsychological Society, 28(6), 611–619. 10.1017/S1355617721000850. PubMed DOI PMC