Rare multi-fungal sepsis: a case of triple-impact immunoparalysis
Language English Country United States Media print-electronic
Document type Case Reports, Journal Article
Grant support
65269705
Ministerstvo Zdravotnictví Ceské Republiky
LM2023069
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_043/0009632
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018132
Ministerstvo Školství, Mládeže a Tělovýchovy
857560
Horizon 2020
PubMed
38647991
DOI
10.1007/s12223-024-01165-0
PII: 10.1007/s12223-024-01165-0
Knihovny.cz E-resources
- Keywords
- COVID-19, Inhalation injury, Isavuconazole, Mycobiome,
- MeSH
- Antifungal Agents * therapeutic use MeSH
- COVID-19 * immunology complications MeSH
- Adult MeSH
- Fatal Outcome MeSH
- Coinfection microbiology drug therapy immunology MeSH
- Humans MeSH
- Mycoses drug therapy microbiology immunology diagnosis MeSH
- Nitriles therapeutic use MeSH
- Burns complications microbiology MeSH
- Pyridines therapeutic use MeSH
- Saccharomycetales genetics drug effects immunology MeSH
- Sepsis drug therapy microbiology immunology MeSH
- Triazoles therapeutic use MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Names of Substances
- Antifungal Agents * MeSH
- isavuconazole MeSH Browser
- Nitriles MeSH
- Pyridines MeSH
- Triazoles MeSH
Patients with burn injury and inhalation injury are highly susceptible to infectious complications, including opportunistic pathogens, due to the loss of skin cover and mucosal damage of respiratory tract as well as the disruption of homeostasis. This case report, a 34-year-old man suffered critical burns, provides the first literature description of triple-impact immunoparalysis (critical burns, inhalation injury, and SARS-CoV-2 infection), leading to a lethal multifocal infection caused by several fungi including very rare environmental representatives Metschnikowia pulcherrima and Wickerhamomyces anomalus. The co-infection by these common environmental yeasts in a human is unique and has not yet been described in the literature. Importantly, our patient developed refractory septic shock and died despite targeted antifungal therapy including the most potent current antifungal agent-isavuconazole. It can be assumed that besides immunoparalysis, effectiveness of therapy by isavuconazole was impaired by the large distribution volume in this case. As this is a common situation in intensive care patients, routine monitoring of plasmatic concentration of isavuconazole can be helpful in personalization of the treatment and dose optimization. Whatmore, many fungal species often remain underdiagnosed during infectious complications, which could be prevented by implementation of new methods, such as next-generation sequencing, into clinical practice.
See more in PubMed
Abdelmonem R, Backx M, Vale L et al (2022) Successful treatment of Mucor circinelloides in a Burn patient. Burns Open 6:77–81. https://doi.org/10.1016/j.burnso.2022.02.005 DOI
Baddley JW, Thompson GR, Chen SCA et al (2021) Coronavirus disease 2019–associated invasive fungal infection. Open Forum Infect Dis 8:ofab510. https://doi.org/10.1093/ofid/ofab510 PubMed DOI PMC
Bereczki L, Bartha N, Kocsubé S et al (2012) Fungaemia caused by Candida pulcherrima. Med Mycol 50:522–524. https://doi.org/10.3109/13693786.2011.644590 PubMed DOI
Blyth DM, Mende K, Weintrob AC et al (2014) Resistance patterns and clinical significance of Candida Colonization and infection in combat-related injured patients from Iraq and Afghanistan. Open Forum Infect Dis 1:ofu109. https://doi.org/10.1093/ofid/ofu109 PubMed DOI PMC
Bolcato L, Thiebaut-Bertrand A, Stanke-Labesque F, Gautier-Veyret E (2022) Variability of isavuconazole trough concentrations during longitudinal therapeutic drug monitoring. J Clin Med 11:5756. https://doi.org/10.3390/jcm11195756 PubMed DOI PMC
Chen H, Liu W, Wang Y et al (2021) SARS-CoV-2 activates lung epithelial cell proinflammatory signaling and leads to immune dysregulation in COVID-19 patients. EBioMedicine 70:103500. https://doi.org/10.1016/j.ebiom.2021.103500 PubMed DOI PMC
Chovanec Z, Veverkova L, Votava M et al (2014) Comparison of two non-invasive methods of microbial analysis in surgery practice: incision swabbing and the indirect imprint technique. Surg Infect (larchmt) 15(6):786–793. https://doi.org/10.1089/sur.2013.168 PubMed DOI
Church D, Elsayed S, Reid O et al (2006) Burn wound infections. Clin Microbiol Rev 19:403–434. https://doi.org/10.1128/CMR.19.2.403-434.2006 PubMed DOI PMC
Deconinck L, Meybeck A, Pradier M et al (2016) Community acquired fungemia caused by Candida pulcherrima: diagnostic contribution of MALDI-TOF mass spectrometry. Ann Clin Microbiol Antimicrob 15:14. https://doi.org/10.1186/s12941-016-0129-1 PubMed DOI PMC
Deutsch CJ, Tan A, Smailes S, Dziewulski P (2018) The diagnosis and management of inhalation injury: an evidence based approach. Burns 44:1040–1051. https://doi.org/10.1016/j.burns.2017.11.013 PubMed DOI
Dutra VR, Silva LF, Oliveira ANM et al (2020) Fatal case of Fungemia by Wickerhamomyces anomalus in a pediatric patient diagnosed in a teaching hospital from Brazil. J Fungi 6:147. https://doi.org/10.3390/jof6030147 DOI
Fadhel M, Patel S, Liu E et al (2019) Saccharomyces cerevisiae fungemia in a critically ill patient with acute cholangitis and long term probiotic use. Med Mycol Case Rep 23:23–25. https://doi.org/10.1016/j.mmcr.2018.11.003 PubMed DOI
Fernández-Ruiz M, Guinea J, Puig-Asensio M et al (2017) Fungemia due to rare opportunistic yeasts: data from a population-based surveillance in Spain. Med Mycol 55:125–136. https://doi.org/10.1093/mmy/myw055 PubMed DOI
Ferrer C, Colom F, Frasés S et al (2001) Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J Clin Microbiol 39:2873–2879. https://doi.org/10.1128/JCM.39.8.2873-2879.2001 PubMed DOI PMC
Habarth-Morales TE, Rios-Diaz AJ, Isch E et al (2023) Increased incidence of suspected smoke inhalation during the coronavirus disease 2019 pandemic: a national database study. J Burn Care Res 44(4):945–948. https://doi.org/10.1093/jbcr/irac155 . Erratum in: J Burn Care Res. 2024 Jan 5;45(1):259. PMID: 36260537; PMCID: PMC9620764 PubMed DOI
Howard PA, Cancio LC, Mcmanus AT et al (1999) What’s new in burn-associated infections? Curr Surg 56
Jeschke MG, van Baar ME, Choudhry MA et al (2020) Burn Injury Nat Rev Dis Primer 6:11. https://doi.org/10.1038/s41572-020-0145-5 DOI
Kalenic S, Jandrlic M, Vegar V et al (2001) Hansenula anomala outbreak at a surgical intensive care unit: a search for risk factors. Eur J Epidemiol 17(5):491–496. https://doi.org/10.1023/a:1013739802940 PubMed DOI
Kuan CS, Ismail R, Kwan Z et al (2016) Isolation and characterization of an atypical Metschnikowia sp. strain from the skin scraping of a dermatitis patient. PloS one 11(6):e0156119. https://doi.org/10.1371/journal.pone.0156119 PubMed DOI PMC
Kumar S, Kumar A, Roudbary M et al (2022) Overview on the infections related to rare Candida species. Pathogens 11:963. https://doi.org/10.3390/pathogens11090963 PubMed DOI PMC
Ladhani HA, Yowler CJ, Claridge JA (2021) Burn wound colonization, infection, and sepsis. Surg Infect 22:44–48. https://doi.org/10.1089/sur.2020.346 DOI
Murray CK, Loo FL, Hospenthal DR et al (2008) Incidence of systemic fungal infection and related mortality following severe burns. Burns 34:1108–1112. https://doi.org/10.1016/j.burns.2008.04.007 PubMed DOI
Risum M, Vestergaard M-B, Weinreich UM et al (2021) Therapeutic drug monitoring of isavuconazole: serum concentration variability and success rates for reaching target in comparison with voriconazole. Antibiotics 10:487. https://doi.org/10.3390/antibiotics10050487 PubMed DOI PMC
Savini V, Hendrickx M, Sisti M et al (2013) An atypical, pigment-producing Metschnikowia strain from a leukaemia patient. Med Mycol 51:438–443. https://doi.org/10.3109/13693786.2012.733429 PubMed DOI
Sharma S (2016) Fungal infection in thermal burns: a prospective study in a tertiary care centre. J Clin Diagn Res. https://doi.org/10.7860/JCDR/2016/20336.8445 PubMed DOI PMC
Thielen BK, Barnes AMT, Sabin AP et al (2019) Widespread Lichtheimia infection in a patient with extensive burns: opportunities for novel antifungal agents. Mycopathologia 184:121–128. https://doi.org/10.1007/s11046-018-0281-6 PubMed DOI
Vranková J, Adámková V (2004) Bacteriological monitoring after burn injury. Acta Chir Plast 46(2):48–50. PMID: 15462065 PubMed
Walker PF, Buehner MF, Wood LA et al (2015) Diagnosis and management of inhalation injury: an updated review. Crit Care 19:351. https://doi.org/10.1186/s13054-015-1077-4 PubMed DOI PMC
Weinstein RA, Mayhall CG (2003) The epidemiology of burn wound infections: then and now. Clin Infect Dis 37:543–550. https://doi.org/10.1086/376993 DOI
Zhang L, Xiao M, Arastehfar A et al (2021) Investigation of the emerging nosocomial Wickerhamomyces anomalus infections at a Chinese tertiary teaching hospital and a systemic review: clinical manifestations, risk factors, treatment, outcomes, and anti-fungal susceptibility. Front Microbiol 12:744502. https://doi.org/10.3389/fmicb.2021.744502 PubMed DOI PMC
Zivec K, Arnez T, Lovsin K et al (2022) Successful outcome of inhalation injury, active SARS-CoV-2 infection, and concomitant pneumonia in a patient with 27% full-thickness burn: a case report. J Burn Care Res 43:749–752. https://doi.org/10.1093/jbcr/irac010 PubMed DOI