• This record comes from PubMed

Glucose and trehalose metabolism through the cyclic pentose phosphate pathway shapes pathogen resistance and host protection in Drosophila

. 2024 May ; 22 (5) : e3002299. [epub] 20240507

Language English Country United States Media electronic-ecollection

Document type Journal Article

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.

See more in PubMed

O’Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16:553–565. doi: 10.1038/nri.2016.70 PubMed DOI PMC

Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, et al.. Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. Banerjee U, Banerjee U, Theopold U, editors. eLife. 2019;8:e50414. doi: 10.7554/eLife.50414 PubMed DOI PMC

Britt EC, Lika J, Giese MA, Schoen TJ, Seim GL, Huang Z, et al.. Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils. Nat Metab. 2022;4:389–403. doi: 10.1038/s42255-022-00550-8 PubMed DOI PMC

Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, et al.. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS Biol. 2015;13:e1002135. doi: 10.1371/journal.pbio.1002135 PubMed DOI PMC

Thompson SN. Trehalose–The Insect ‘Blood’ Sugar. Advances in Insect Physiology. Elsevier; 2003. p. 205–285. doi: 10.1016/S0065-2806(03)31004-5 DOI

Ugrankar R, Theodoropoulos P, Akdemir F, Henne WM, Graff JM. Circulating glucose levels inversely correlate with Drosophila larval feeding through insulin signaling and SLC5A11. Comm Biol. 2018:1. doi: 10.1038/s42003-018-0109-4 PubMed DOI PMC

Matsushita R, Nishimura T. Trehalose metabolism confers developmental robustness and stability in Drosophila by regulating glucose homeostasis. Comm Biol. 2020:3. doi: 10.1038/s42003-020-0889-1 PubMed DOI PMC

Cattenoz PB, Sakr R, Pavlidaki A, Delaporte C, Riba A, Molina N, et al.. Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J. 2020:39. doi: 10.15252/embj.2020104486 PubMed DOI PMC

Tattikota SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, et al.. A single-cell survey of Drosophila blood. Lemaître B, Akhmanova A, Lemaître B, editors. eLife. 2020;9:e54818. doi: 10.7554/eLife.54818 PubMed DOI PMC

Zhang Y, Wang F, Feng Q, Wang H, Tang T, Huang D, et al.. Involvement of trehalose-6-phosphate synthase in innate immunity of Musca domestica. Dev Comp Immunol. 2019;91:85–92. doi: 10.1016/j.dci.2018.10.010 PubMed DOI

Russo J, Dupas S, Frey F, Carton Y, Brehelin M. Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology. 1996;112:135–142. doi: 10.1017/s0031182000065173 PubMed DOI

Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochem Mol Biol. 2005;35:443–459. doi: 10.1016/j.ibmb.2005.01.014 PubMed DOI

Dolezal T. How to eliminate pathogen without killing oneself? Immunometabolism of encapsulation and melanization in Drosophila. Front Immunol. 2023:14. doi: 10.3389/fimmu.2023.1330312 PubMed DOI PMC

Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, et al.. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev. 2015;90:927–963. doi: 10.1111/brv.12140 PubMed DOI PMC

Ghergurovich JM, García-Cañaveras JC, Wang J, Schmidt E, Zhang Z, TeSlaa T, et al.. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat Chem Biol. 2020;16:731–739. doi: 10.1038/s41589-020-0533-x PubMed DOI PMC

Perl A. Review: Metabolic Control of Immune System Activation in Rheumatic Diseases. Arthritis Rheumatol. 2017;69:2259–2270. doi: 10.1002/art.40223 PubMed DOI PMC

Dolezal T. Adenosine: a selfish-immunity signal? Oncotarget. 2015;6:32307–32308. doi: 10.18632/oncotarget.4685 PubMed DOI PMC

Cox JE, Thummel CS, Tennessen JM. Metabolomic Studies in Drosophila. Genetics. 2017;206:1169–1185. doi: 10.1534/genetics.117.200014 PubMed DOI PMC

Hertenstein H, McMullen E, Weiler A, Volkenhoff A, Becker HM, Schirmeier S. Starvation-induced regulation of carbohydrate transport at the blood–brain barrier is TGF-β-signaling dependent. VijayRaghavan K, editor. eLife. 2021;10:e62503. doi: 10.7554/eLife.62503 PubMed DOI PMC

Francis D, Ghazanfar S, Havula E, Krycer JR, Strbenac D, Senior A, et al.. Genome-wide analysis in Drosophila reveals diet-by-gene interactions and uncovers diet-responsive genes. Kulathinal R, editor. G3. 2021;11. doi: 10.1093/g3journal/jkab171 PubMed DOI PMC

McMullen E, Weiler A, Becker HM, Schirmeier S. Plasticity of Carbohydrate Transport at the Blood-Brain Barrier. Front Behav Neurosci. 2021;14. Available from: https://www.frontiersin.org/articles/10.3389/fnbeh.2020.612430. doi: 10.3389/fnbeh.2020.612430 PubMed DOI PMC

Yoshida M, Matsuda H, Kubo H, Nishimura T. Molecular characterization of Tps1 and Treh genes in Drosophila and their role in body water homeostasis. Sci Rep. 2016:6. doi: 10.1038/srep30582 PubMed DOI PMC

Dick TP, Ralser M. Metabolic Remodeling in Times of Stress: Who Shoots Faster than His Shadow? Mol Cell. 2015;59:519–521. doi: 10.1016/j.molcel.2015.08.002 PubMed DOI

Katz J, Rognstad R. The Labeling of Pentose Phosphate from Glucose-14C and Estimation of the Rates of Transaldolase, Transketolase, the Contribution of the Pentose Cycle, and Ribose Phosphate Synthesis*. Biochemistry. 1967;6:2227–2247. doi: 10.1021/bi00859a046 PubMed DOI

Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. Insect Biochem Mol Biol. 2019;109:31–42. doi: 10.1016/j.ibmb.2019.04.005 PubMed DOI

Duan L, Cooper DE, Scheidemantle G, Locasale JW, Kirsch DG, Liu X. 13C tracer analysis suggests extensive recycling of endogenous CO2 in vivo. Cancer Metab. 2022:10. doi: 10.1186/s40170-022-00287-8 PubMed DOI PMC

Hughes MB, Lucchesi JC. Genetic Rescue of a Lethal “Null” Activity Allele of 6-Phosphogluconate Dehydrogenase in Drosophila melanogaster. Science. 1977;196:1114–1115. doi: 10.1126/science.404711 PubMed DOI

Duffy JB, Harrison DA, Perrimon N. Identifying loci required for follicular patterning using directed mosaics. Development. 1998;125:2263–2271. doi: 10.1242/dev.125.12.2263 PubMed DOI

Nappi A, Poirié M, Carton Y. Chapter 4 The Role of Melanization and Cytotoxic By-Products in the Cellular Immune Responses of Drosophila Against Parasitic Wasps. Advances in Parasitology. Academic Press; 2009. p. 99–121. doi: 10.1016/S0065-308X(09)70004-1 PubMed DOI

Kanzok SM. Substitution of the Thioredoxin Svstem for Glutathione Redudase in Drosophila melanogaster. PubMed

Bauer H, Kanzok SM, Schirmer RH. Thioredoxin-2 but Not Thioredoxin-1 Is a Substrate of Thioredoxin Peroxidase-1 from Drosophila melanogaster. J Biol Chem. 2002;277:17457–17463. doi: 10.1074/jbc.M200636200 PubMed DOI

Komarov DA, Ryazanova AD, Slepneva IA, Khramtsov VV, Dubovskiy IM, Glupov VV. Pathogen-targeted hydroxyl radical generation during melanization in insect hemolymph: EPR study of a probable cytotoxicity mechanism. Appl Magn Reson. 2009;35:495–501. doi: 10.1007/s00723-009-0180-6 DOI

Nappi AJ, Vass E. Hydrogen Peroxide Production in Immune-Reactive Drosophila melanogaster. J Parasitol. 1998;84:1150. doi: 10.2307/3284664 PubMed DOI

Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12:5–23. doi: 10.1038/cmi.2014.89 PubMed DOI PMC

Honti V, Csordás G, Márkus R, Kurucz É, Jankovics F, Andó I. Cell lineage tracing reveals the plasticity of the hemocyte lineages and of the hematopoietic compartments in Drosophila melanogaster. Mol Immunol. 2010;47:1997–2004. doi: 10.1016/j.molimm.2010.04.017 PubMed DOI

Yu W, Wang Z, Zhang K, Chi Z, Xu T, Jiang D, et al.. One-Carbon Metabolism Supports S-Adenosylmethionine and Histone Methylation to Drive Inflammatory Macrophages. Mol Cell. 2019;75:1147–1160.e5. doi: 10.1016/j.molcel.2019.06.039 PubMed DOI

Parkhitko AA, Jouandin P, Mohr SE, Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell. 2019. [cited 2019 Sep 6]. doi: 10.1111/acel.13034 PubMed DOI PMC

Nappi AJ, Vass E. Hydroxyl radical formation resulting from the interaction of nitric oxide and hydrogen peroxide. Biochim Biophys Acta. 1998;1380:55–63. doi: 10.1016/s0304-4165(97)00125-6 PubMed DOI

Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009;461:537–541. doi: 10.1038/nature08313 PubMed DOI PMC

Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol. 2021:9. doi: 10.3389/fcell.2021.714370 PubMed DOI PMC

Dudzic JP, Kondo S, Ueda R, Bergman CM, Lemaitre B. Drosophila innate immunity: regional and functional specialization of prophenoloxidases. BMC Biol. 2015:13. doi: 10.1186/s12915-015-0193-6 PubMed DOI PMC

Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez G, et al.. Reactive Oxygen Species Modulate Anopheles gambiae Immunity against Bacteria and Plasmodium. J Biol Chem. 2008;283:3217–3223. doi: 10.1074/jbc.M705873200 PubMed DOI

DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, Barillas-Mury C. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2007;104:2121–2126. doi: 10.1073/pnas.0608407104 PubMed DOI PMC

Virág L, Jaén RI, Regdon Z, Boscá L, Prieto P. Self-defense of macrophages against oxidative injury: Fighting for their own survival. Redox Biol. 2019;26:101261. doi: 10.1016/j.redox.2019.101261 PubMed DOI PMC

Kondo S, Ueda R. Highly Improved Gene Targeting by Germline-Specific Cas9 Expression in Drosophila. Genetics. 2013;195:715–721. doi: 10.1534/genetics.113.156737 PubMed DOI PMC

Moos M, Kazek M, Chodakova L, Lehr K, Strych L, Nedbalova P, et al.. Glucose and trehalose metabolism through the cyclic pentose phosphate pathway shape pathogen resistance and host protection in Drosophila. figshare; 2024. doi: 10.6084/m9.figshare.25525657.v1 PubMed DOI PMC

Yildirim K, Winkler B, Pogodalla N, Mackensen S, Baldenius M, Garcia L, et al.. Redundant functions of the SLC5A transporters Rumpel, Bumpel, and Kumpel in ensheathing glial cells. Biol Open. 2022;11:bio059128. doi: 10.1242/bio.059128 PubMed DOI PMC

Volkenhoff A, Weiler A, Letzel M, Stehling M, Klämbt C, Schirmeier S. Glial Glycolysis Is Essential for Neuronal Survival in Drosophila. Cell Metab. 2015;22:437–447. doi: 10.1016/j.cmet.2015.07.006 PubMed DOI

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...