Stacked mutations in wheat homologues of rice SEMI-DWARF1 confer a novel semi-dwarf phenotype

. 2024 May 09 ; 24 (1) : 384. [epub] 20240509

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38724935
Odkazy

PubMed 38724935
PubMed Central PMC11080193
DOI 10.1186/s12870-024-05098-1
PII: 10.1186/s12870-024-05098-1
Knihovny.cz E-zdroje

BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.

Zobrazit více v PubMed

Berry PM, Sterling M, Spink JH, Baker CJ, Sylvester-Bradley R, Mooney SJ, Tams AR, Ennos AR. Understanding and reducing lodging in cereals. Adv Agron. 2004;84:217–271. doi: 10.1016/S0065-2113(04)84005-7. DOI

Hedden P. The genes of the green revolution. Trends Genet. 2003;19(1):5–9. doi: 10.1016/S0168-9525(02)00009-4. PubMed DOI

Miralles DJ, Slafer GA. Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breeding. 1995;114(5):392–396. doi: 10.1111/j.1439-0523.1995.tb00818.x. DOI

Youssefian S, Kirby EJM, Gale MD. Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat 2. Effects on leaf, stem, ear and floret growth. Field Crop Res. 1992;28(3):191–210. doi: 10.1016/0378-4290(92)90040-G. DOI

Guedira M, Brown-Guedira G, Van Sanford D, Sneller C, Souza E, Marshall D. Distribution of Rht genes in modern and historic winter wheat cultivars from the eastern and central USA. Crop Sci. 2010;50(5):1811–1822. doi: 10.2135/cropsci2009.10.0626. DOI

Flintham JE, Borner A, Worland AJ, Gale MD. Optimizing wheat grain yield: Effects of Rht (gibberellin- insensitive) dwarfing genes. J Agric Sci. 1997;128(Pt1):11–25. doi: 10.1017/S0021859696003942. DOI

Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–261. doi: 10.1038/22307. PubMed DOI

Yoshida H, Hirano K, Sato T, Mitsuda N, Nomoto M, Maeo K, Koketsu E, Mitani R, Kawamura M, Ishiguro S, et al. DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins. Proc Natl Acad Sci USA. 2014;111(21):7861–7866. doi: 10.1073/pnas.1321669111. PubMed DOI PMC

Murase K, Hirano Y, Sun TP, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature. 2008;456(7221):459–463. doi: 10.1038/nature07519. PubMed DOI

Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M. Structural basis for gibberellin recognition by its receptor GID1. Nature. 2008;456(7221):520–523. doi: 10.1038/nature07546. PubMed DOI

Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature. 2005;437(7059):693–698. doi: 10.1038/nature04028. PubMed DOI

Van de Velde K, Thomas SG, Heyse F, Kaspar R, Van Der Straeten D, Rohde A. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles. Mol Plant. 2021;14(4):679–687. doi: 10.1016/j.molp.2021.01.002. PubMed DOI

Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol. 2011;157(4):1820–1831. doi: 10.1104/pp.111.183657. PubMed DOI PMC

Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant development and crop yield: the role of gibberellins. Plants. 2022;11(19):2650. doi: 10.3390/plants11192650. PubMed DOI PMC

Tyler L, Thomas SG, Hu JH, Dill A, Alonso JM, Ecker JR, Sun TP. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 2004;135(2):1008–1019. doi: 10.1104/pp.104.039578. PubMed DOI PMC

Schierenbeck M, Alqudah AM, Lantos E, Avogadro EG, Simón MR, Börner A. Green revolution dwarfing Rht genes negatively affected wheat floral traits related to cross-pollination efficiency. Plant J. 2024 doi: 10.1111/tpj.16652. PubMed DOI

Xu D, Bian Y, Luo X, Jia C, Hao Q, Tian X, Cao Q, Chen W, Ma W, Ni Z, et al. Dissecting pleiotropic functions of the wheat Green Revolution gene Rht-B1b in plant morphogenesis and yield formation. Development. 2023;150(20):dev201601. doi: 10.1242/dev.201601. PubMed DOI

Ellis MH, Rebetzke GJ, Chandler P, Bonnett D, Spielmeyer W, Richards RA. The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol. 2004;31(6):583–589. doi: 10.1071/FP03207. PubMed DOI

Asano K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M. Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed Sci. 2007;57(1):53–58. doi: 10.1270/jsbbs.57.53. DOI

Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol. 2020;61:1832–1849. doi: 10.1093/pcp/pcaa092. PubMed DOI PMC

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G, et al. A mutant gibberellin-synthesis gene in rice. Nature. 2002;416:701. doi: 10.1038/416701a. PubMed DOI

Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA. 2002;99(13):9043–9048. doi: 10.1073/pnas.132266399. PubMed DOI PMC

Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 2004;134(4):1642–1653. doi: 10.1104/pp.103.033696. PubMed DOI PMC

Murai M, Takamure I, Sato S, Tokutome T, Sato Y. Effects of the dwarfing gene originating from ‘Dee-geo-woo-gen’ on yield and its related traits in rice. Breeding Sci. 2002;52(2):95–100. doi: 10.1270/jsbbs.52.95. DOI

Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol. 2004;55(5):687–700. doi: 10.1007/s11103-004-1692-y. PubMed DOI

Su S, Hong J, Chen X, Zhang C, Chen M, Luo Z, Chang S, Bai S, Liang W, Liu Q, Zhang D. Gibberellins orchestrate panicle architecture mediated by DELLA–KNOX signalling in rice. Plant Biotechnol J. 2021;19(11):2304–2318. doi: 10.1111/pbi.13661. PubMed DOI PMC

Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet. 2016;12(10):e1006386. doi: 10.1371/journal.pgen.1006386. PubMed DOI PMC

Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang XD, Borrill P, et al. Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci USA. 2017;114(6):E913–E921. doi: 10.1073/pnas.1619268114. PubMed DOI PMC

Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, et al. The transcriptional landscape of polyploid wheat. Science. 2018;361(6403):eaar6089. doi: 10.1126/science.aar6089. PubMed DOI

King R, Bird N, Ramirez-Gonzalez R, Coghill JA, Patil A, Hassani-Pak K, Uauy C, Phillips AL. Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One. 2015;10(9):e0137549. doi: 10.1371/journal.pone.0137549. PubMed DOI PMC

Vaughan SP, Baker JM, Primavesi LF, Patil A, King R, Hassani-Pak K, Kulasekaran S, Coghill J, Ward JL, Huttly AK, Phillips AL. Proanthocyanidin biosynthesis in the developing wheat seed coat investigated by chemical and RNA-Seq analysis. Plant Direct. 2022;6(10):e453. doi: 10.1002/pld3.453. PubMed DOI PMC

Dvorak J, Mcguire PE, Cassidy B. Apparent sources of the a genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide-sequences. Genome. 1988;30(5):680–689. doi: 10.1139/g88-115. DOI

Pearce SP, Huttly AK, Prosser IM, Li YD, Vaughan SP, Gallova B, Patil A, Coghill JA, Dubcovsky J, Hedden P, Phillips AL. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol. 2015;15:130. doi: 10.1186/s12870-015-0520-7. PubMed DOI PMC

Boden SA, McIntosh RA, Uauy C, Krattinger SG, Dubcovsky J, Rogers WJ, Xia XC, Badaeva ED, Bentley AR, Brown-Guedira G, et al. Updated guidelines for gene nomenclature in wheat. Theor Appl Genet. 2023;136(4):72. doi: 10.1007/s00122-023-04253-w. PubMed DOI PMC

Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol. 2005;23(1):75–81. doi: 10.1038/nbt1043. PubMed DOI

Dong CM, Vincent K, Sharp P. Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor. BMC Plant Biol. 2009;9:143. doi: 10.1186/1471-2229-9-143. PubMed DOI PMC

Botticella E, Sestili F, Hernandez-Lopez A, Phillips A, Lafiandra D. High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes. BMC Plant Biol. 2011;11:156. doi: 10.1186/1471-2229-11-156. PubMed DOI PMC

Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–3814. doi: 10.1093/nar/gkg509. PubMed DOI PMC

Bushnell B: BBMap: a fast, accurate, splice-aware aligner. In: Lawrence Berkeley National Laboratory. 2014.

He C, Holme J, Anthony J. SNP genotyping: The KASP assay. In: Fleury D, Whitford R, editors. Crop Breeding: Methods and Protocols. New York: Springer New York; 2014. pp. 75–86.

Van Deynze A, Stoffel K. High-throughput DNA extraction from seeds. Seed Sci Technol. 2006;34(3):741–745. doi: 10.15258/sst.2006.34.3.21. DOI

Urbanova T, Tarkowska D, Novak O, Hedden P, Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI

Rittenberg D, Foster GL. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem. 1940;133(3):737–744. doi: 10.1016/S0021-9258(18)73304-8. DOI

Ruijter JM, Ruiz-Villalba A, van den Hoff AJJ, Gunst QD, Wittwer CT, van den Hoff MJB. Removal of artifact bias from qPCR results using DNA melting curve analysis. FASEB J. 2019;33(12):14542–14555. doi: 10.1096/fj.201901604R. PubMed DOI

Uauy C, Wulff BBH, Dubcovsky J. Combining traditional mutagenesis with new high-throughput sequencing and genome rditing to reveal hidden variation in polyploid wheat. Annu Rev Genet. 2017;51:435–454. doi: 10.1146/annurev-genet-120116-024533. PubMed DOI

Zhang J, Xiong H, Burguener GF, Vasquez-Gross H, Liu Q, Debernardi JM, Akhunova A, Garland-Campbell K, Kianian SF, Brown-Guedira G, et al. Sequencing 4.3 million mutations in wheat promoters to understand and modify gene expression. Proc Natl Acad Sci USA. 2023;120(38):e2306494120. doi: 10.1073/pnas.2306494120. PubMed DOI PMC

Beyene G, Chauhan RD, Villmer J, Husic N, Wang N, Gebre E, Girma D, Chanyalew S, Assefa K, Tabor G, et al. CRISPR/Cas9-mediated tetra-allelic mutation of the ‘Green Revolution’ SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef) Plant Biotechnol J. 2022;20(9):1716–1729. doi: 10.1111/pbi.13842. PubMed DOI PMC

Chen X, Tian X, Xue L, Zhang X, Yang S, Traw MB, Huang J. CRISPR-based assessment of gene specialization in the gibberellin metabolic pathway in rice. Plant Physiol. 2019;180(4):2091–2105. doi: 10.1104/pp.19.00328. PubMed DOI PMC

Hedden P, Thomas SG. Gibberellin biosynthesis and its regulation. Biochem J. 2012;444(1):11–25. doi: 10.1042/BJ20120245. PubMed DOI

Murai M, Shinbashi N, Sato S, Sato K, Araki H, Ehara M. Effect of the dwarfing gene from ‘Dee-geo-woo-gen’ on culm and internode lengths, and its response to fertilizer in rice. Breed Sci. 1995;45(1):7–14.

Jia QJ, Li CD, Shang Y, Zhu JH, Hua W, Wang JM, Yang JM, Zhang GP. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genom. 2015;16:927. doi: 10.1186/s12864-015-2116-x. PubMed DOI PMC

Jia QJ, Zhang JJ, Westcott S, Zhang XQ, Bellgard M, Lance R, Li CD. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics. 2009;9(2):255–262. doi: 10.1007/s10142-009-0120-4. PubMed DOI

Teplyakova S, Lebedeva M, Ivanova N, Horeva V, Voytsutskaya N, Kovaleva O, Potokina E. Impact of the 7-bp deletion in HvGA20ox2 gene on agronomic important traits in barley (Hordeum vulgare L.) BMC Plant Biol. 2017;17:17. doi: 10.1186/s12870-017-1121-4. PubMed DOI PMC

Xu YH, Jia QJ, Zhou GF, Zhang XQ, Angessa T, Broughton S, Yan G, Zhang WY, Li CD. Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol. 2017;17:11. doi: 10.1186/s12870-016-0964-4. PubMed DOI PMC

Griffiths S, Simmonds J, Leverington M, Wang YK, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed. 2012;29(1):159–171. doi: 10.1007/s11032-010-9534-x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...