• This record comes from PubMed

Microstructure and physical properties of black-aluminum antireflective films

. 2024 May 10 ; 14 (22) : 15220-15231. [epub] 20240510

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

The microstructure and physical properties of reflective and black aluminum were compared for layers of different thicknesses deposited by magnetron sputtering on fused silica substrates. Reflective Al layers followed the Volmer-Weber growth mechanism classically observed for polycrystalline metal films. On the contrary, the extra nitrogen gas used to deposit the black aluminum layers modified the growth mechanism and changed the film morphologies. Nitrogen cumulated in the grain boundaries, favoring the pinning effect and stopping crystallite growth. High defect concentration, especially vacancies, led to strong columnar growth. Properties reported for black aluminum tend to be promising for sensors and emissivity applications.

See more in PubMed

Zaeschmar G. Nedoluha A. J. Opt. Soc. Am. 1972;62:348.

Kravets V. G. Neubeck S. Grigorenko A. N. Kravets A. F. Phys. Rev. B. 2010;81:9.

Hedayati M. Faupel F. Elbahri M. Materials. 2014;7:1221–1248. PubMed PMC

Wang C.-M. Chen Y.-C. Lee M.-S. Chen K.-J. Jpn. J. Appl. Phys. 2000;39:551–554.

Christiansen A. B. Caringal G. P. Clausen J. S. Grajower M. Taha H. Levy U. Asger Mortensen N. Kristensen A. Sci. Rep. 2015;5:10563. PubMed PMC

Gu S. Lu Y. Ding Y. Li L. Song H. Wang J. Wu Q. Biosens. Bioelectron. 2014;55:106–112. PubMed

Zhang X.-Y. Shan F. Zhou H.-L. Su D. Xue X.-M. Wu J.-Y. Chen Y.-Z. Zhao N. Zhang T. J. Mater. Chem. C. 2018;6:989–999.

More-Chevalier J. Yudin P. V. Cibert C. Bednyakov P. Fitl P. Valenta J. Novotný M. Savinov M. Poupon M. Zikmund T. Poullain G. Lančok J. J. Appl. Phys. 2019;126:214501.

Hruška M. More-Chevalier J. Fitl P. Novotný M. Hruška P. Prokop D. Pokorný P. Kejzlar J. Gadenne V. Patrone L. Vrňata M. Lančok J. Nanomaterials. 2022;12:4297. PubMed PMC

Vorobyev A. Y. Guo C. Adv. Mech. Eng. 2010;2:452749.

Aydin K. Ferry V. E. Briggs R. M. Atwater H. A. Nat. Commun. 2011;2:517. PubMed

Abdelaziz R. Disci-Zayed D. Hedayati M. K. Pöhls J.-H. Zillohu A. U. Erkartal B. Chakravadhanula V. S. K. Duppel V. Kienle L. Elbahri M. Nat. Commun. 2013;4:2400. PubMed PMC

Yetisen A. K. Qu H. Manbachi A. Butt H. Dokmeci M. R. Hinestroza J. P. Skorobogatiy M. Khademhosseini A. Yun S. H. ACS Nano. 2016;10(3):3042–3068. PubMed

Alvarez R. García-Martín J. M. Macías-Montero M. Gonzalez-Garcia L. González J. C. Rico V. Perlich J. Cotrino J. González-Elipe A. R. Palmero A. Nanotechnology. 2013;24:045604. PubMed

Melikhova O. Čížek J. Hruška P. Liedke M. O. Butterling M. Wagner A. Novotný M. More-Chevalier J. Acta Phys. Pol., B. 2020;51:383.

More-Chevalier J. Novotný M. Hruška P. Fekete L. Fitl P. Bulíř J. Pokorný P. Volfová L. Havlová Š. Vondráček M. Lančok J. RSC Adv. 2020;10:20765–20771. PubMed PMC

Hruška P. More-Chevalier J. Novotný M. Čížek J. Melikhova O. Fekete L. Poupon M. Bulíř J. Volfová L. Butterling M. Liedke M. O. Wagner A. Fitl P. J. Alloys Compd. 2021;872:159744.

Pfund A. H. Rev. Sci. Instrum. 1930;1:397–399.

Strimer P. Gerbaux X. Hadni A. Souel T. Infrared Phys. 1981;21:37–39.

Palatnik L. S. Kovaleva O. I. Tartakovskaya I. Kh. Derevyanchenko A. S. J. Appl. Spectrosc. 1977;27:1524–1526.

Betts D. B. Clarke F. J. J. Cox L. J. Larkin J. A. J. Phys. E: Sci. Instrum. 1985;18:689–696.

Melikhova O. Čížek J. Hruška P. Lukáč F. Novotný M. More-Chevalier J. Fitl P. Liedke M. O. Butterling M. Wagner A. Acta Phys. Pol., A. 2020;137:222–226.

Vorobyev A. Y. Guo C. J. Appl. Phys. 2008;104:053516.

Zheng B. Wang W. Jiang G. Mei X. Appl. Phys. B: Lasers Opt. 2016;122:180.

Wöbbeking K. Li M. Hübner E. G. Schade W. RSC Adv. 2019;9:37598–37607. PubMed PMC

Lundgaard S. Ng S. H. Nishijima Y. Mazilu M. Juodkazis S. Micromachines. 2020;11:256. PubMed PMC

Novotný M. Fitl P. Sytchkova A. Bulíř J. Lančok J. Pokorný P. Najdek D. Bočan J. Cent. Eur. J. Phys. 2009;7:327.

Vorobyev A. Y. Guo C. Appl. Phys. Lett. 2008;92:041914.

Ou Z. Huang M. Zhao F. Opt. Express. 2014;22:17254. PubMed

Vorobyev A. Y. Guo C. J. Appl. Phys. 2015;117:033103.

Romanova M. More-Chevalier J. Novotny M. Pokorny P. Volfova L. Fitl P. Poplausks R. Dekhtyar Y. Physica Status Solidi (B) 2021:2100467.

Pokorný P. Novotný M. More-Chevalier J. Dekhtyar Y. Romanova M. Davídková M. Chertopalov S. Fitl P. Hruška M. Kawamura M. Kiba T. Lančok J. Vacuum. 2022;205:111377.

Xingfang H. Shuyin Q. Jingfen T. Meifeng H. Sol. Energy Mater. 1988;17:207–215.

Christiansen A. B. Clausen J. Asger Mortensen N. Kristensen A. Appl. Phys. Lett. 2012;101:131902.

Petříček V. Dušek M. Palatinus L. Z. Kristallogr. - Cryst. Mater. 2014;229(5):345–352.

Coelho A. A. J. Appl. Crystallogr. 2018;51:210–218.

Wagner A. Butterling M. Liedke M. O. Potzger K. Krause-Rehberg R. AIP Conf. Proc. 2018;1970:040003.

Gabriel F. Gippner P. Grosse E. Janssen D. Michel P. Prade H. Schamlott A. Seidel W. Wolf A. Wünsch R. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 2000;161–163:1143–1147.

Schultz P. J. Lynn K. G. Rev. Mod. Phys. 1988;60:701–779.

Čížek J. Acta Phys. Pol., A. 2020;137:177–187.

Straumanis M. E. J. Appl. Phys. 1959;30:1965–1969.

Levin I., NIST Inorganic Crystal Structure Database (ICSD), National Institute of Standards and Technology, 2018, 10.18434/M32147, (accessed 2024-05-06) DOI

Petrov I. Barna P. B. Hultman L. Greene J. E. J. Vac. Sci. Technol., A. 2003;21:S117–S128.

Grovenor C. R. M. Hentzell H. T. G. Smith D. A. Acta Metall. 1984;32:773–781.

Cougnon F. G. Dulmaa A. Dedoncker R. Galbadrakh R. Depla D. Appl. Phys. Lett. 2018;112:221903.

Yu H. Z. Thompson C. V. J. Vac. Sci. Technol., A. 2015;33:021504.

Dulmaa A. Cougnon F. G. Dedoncker R. Depla D. Acta Mater. 2021;212:116896.

Petrov I. Barna P. B. Hultman L. Greene J. E. J. Vac. Sci. Technol., A. 2003;21:S117–S128.

Moelans N. Blanpain B. Wollants P. Acta Mater. 2007;55:2173–2182.

van Veen A. Schut H. de Vries J. Hakvoort R. A. Ijpma M. R. AIP Conf. Proc. 1991;218:171–198.

Čížek J. Procházka I. Kmječ T. Vostrý P. Phys. Status Solidi A. 2000;180:439–458.

Čížek J. Melikhova O. Barnovská Z. Procházka I. Islamgaliev R. K. J. Phys.: Conf. Ser. 2013;443

Ito K. Nakanishi H. Ujihira Y. J. Phys. Chem. B. 1999;103:4555–4558.

Bečvář F. Čížek J. Procházka I. Janotová J. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2005;539:372–385.

Rincón-Llorente G. Heras I. Guillén Rodríguez E. Schumann E. Krause M. Escobar-Galindo R. Coatings. 2018;8:321.

Ehrenreich H. Philipp H. R. Segall B. Phys. Rev. 1963;132:1918–1928.

Diest K. Liberman V. Lennon D. M. Welander P. B. Rothschild M. Opt. Express. 2013;21:28638. PubMed

Coutts T. J., Electrical Conduction in Thin Metal Films, Elsevier, Amsterdam, 1974

Novotný M. Bulíř J. Lančok J. Pokorný P. Bodnár M. J. Nanophotonics. 2011;5(1):051503.

Du H. Gong J. Sun C. Lee S. W. Wen L. S. J. Mater. Sci. 2004;39(8):2865–2867.

Mwema F. M. Oladijo O. P. Akinlabi S. A. Akinlabi E. T. J. Alloys Compd. 2018;747:306–323.

Philofsky E. Hall E. IEEE Trans. Parts, Hybrids, Packag. 1975;11:281–290.

Bordo K. Rubahn H.-G. Mult. Scler. J. 2012;18:313–317.

Orton J. W. Powell M. J. Rep. Prog. Phys. 1980;43:1263–1307.

Schubert E. F. Gilmer G. H. Kopf R. F. Luftman H. S. Phys. Rev. B. 1992;46:15078–15084. PubMed

Tang X. Fan D. Peng K. Yang D. Guo L. Lu X. Dai J. Wang G. Liu H. Zhou X. Chem. Mater. 2017;29:7401–7407.

Kaess F. Mita S. Xie J. Reddy P. Klump A. Hernandez-Balderrama L. H. Washiyama S. Franke A. Kirste R. Hoffmann A. Collazo R. Sitar Z. J. Appl. Phys. 2016;120:105701.

Newest 20 citations...

See more in
Medvik | PubMed

Spectral Emissivity and Thermal Conductivity Properties of Black Aluminum Films

. 2025 Feb 18 ; 41 (6) : 3832-3842. [epub] 20250101

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...