HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38747804
PubMed Central
PMC11197007
DOI
10.1021/acschembio.4c00151
Knihovny.cz E-zdroje
- MeSH
- HIV infekce * virologie metabolismus MeSH
- HIV-1 * MeSH
- lidé MeSH
- malá jadérková RNA * metabolismus genetika MeSH
- NAD * metabolismus MeSH
- RNA čepičky metabolismus MeSH
- RNA malá jaderná * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- malá jadérková RNA * MeSH
- NAD * MeSH
- RNA čepičky MeSH
- RNA malá jaderná * MeSH
Nicotinamide adenine dinucleotide (NAD) is a critical component of the cellular metabolism and also serves as an alternative 5' cap on various RNAs. However, the function of the NAD RNA cap is still under investigation. We studied NAD capping of RNAs in HIV-1-infected cells because HIV-1 is responsible for the depletion of the NAD/NADH cellular pool and causing intracellular pellagra. By applying the NAD captureSeq protocol to HIV-1-infected and uninfected cells, we revealed that four snRNAs (e.g., U1) and four snoRNAs lost their NAD cap when infected with HIV-1. Here, we provide evidence that the presence of the NAD cap decreases the stability of the U1/HIV-1 pre-mRNA duplex. Additionally, we demonstrate that reducing the quantity of NAD-capped RNA by overexpressing the NAD RNA decapping enzyme DXO results in an increase in HIV-1 infectivity. This suggests that NAD capping is unfavorable for HIV-1 and plays a role in its infectivity.
1st Faculty of Medicine Charles University Kateřinská 32 121 08 Prague Czechia
Division of Biophysics Faculty of Physics University of Warsaw Pasteura 5 02 093 Warsaw Poland
Faculty of Science Department of Cell Biology Charles University Viničná 7 121 08 Prague 2 Czechia
Zobrazit více v PubMed
Boccaletto P.; Machnicka M. A.; Purta E.; Piątkowski P.; Bagiński B.; Wirecki T. K.; de Crécy-Lagard V.; Ross R.; Limbach P. A.; Kotter A.; Helm M.; Bujnicki J. M. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018, 46, D303–D307. 10.1093/nar/gkx1030. PubMed DOI PMC
Chen Y. G.; Kowtoniuk W. E.; Agarwal I.; Shen Y.; Liu D. R. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat. Chem. Biol. 2009, 5, 879.10.1038/nchembio.235. PubMed DOI PMC
Sherwood A. V.; Rivera-Rangel L. R.; Ryberg L. A.; Larsen H. S.; Anker K. M.; Costa R.; Vågbø C. B.; Jakljevič E.; Pham L. V.; Fernandez-Antunez C.; Indrisiunaite G.; Podolska-Charlery A.; Grothen J. E. R.; Langvad N. W.; Fossat N.; Offersgaard A.; Al-Chaer A.; Nielsen L.; Kuśnierczyk A.; Sølund C.; Weis N.; Gottwein J. M.; Holmbeck K.; Bottaro S.; Ramirez S.; Bukh J.; Scheel T. K. H.; Vinther J. Hepatitis C virus RNA is 5′-capped with flavin adenine dinucleotide. Nature 2023, 619, 811–818. 10.1038/s41586-023-06301-3. PubMed DOI
Hudeček O.; Benoni R.; Reyes-Gutierrez P. E.; Culka M.; Šanderová H.; Hubálek M.; Rulíšek L.; Cvačka J.; Krásný L.; Cahová H. Dinucleoside polyphosphates act as 5′-RNA caps in bacteria. Nat. Commun. 2020, 11, 1052.10.1038/s41467-020-14896-8. PubMed DOI PMC
František Potužník J.; Nešuta O.; Škríba A.; Voleníková B.; Mititelu M.-B.; Mancini F.; Serianni V.; Fernandez H.; Spustová K.; Trylčová J.; Vopalensky P.; Cahová H. Diadenosine Tetraphosphate (Ap4A) Serves as a 5′ RNA Cap in Mammalian Cells. Angew. Chem., Int. Ed. 2024, 63, e202314951.10.1002/anie.202314951. PubMed DOI
Cahova H.; Winz M.-L.; Hoefer K.; Nuebel G.; Jaeschke A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 2015, 519, 374.10.1038/nature14020. PubMed DOI
Winz M.-L.; Cahová H.; Nübel G.; Frindert J.; Höfer K.; Jäschke A. Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq. Nat. Protoc. 2017, 12, 122.10.1038/nprot.2016.163. PubMed DOI
Hu H., Flynn N., Zhang H., You C., Hang R., Wang X., Zhong H., Chan Z., Xia Y., Chen X. (2021) SPAAC-NAD-seq, a sensitive and accurate method to profile NAD(+)-capped transcripts, Proc. Natl. Acad. Sci. U.S.A. 118,10.1073/pnas.2025595118. PubMed DOI PMC
Sharma S.; Yang J.; Favate J.; Shah P.; Kiledjian M. NADcapPro and circNC: methods for accurate profiling of NAD and non-canonical RNA caps in eukaryotes. Commun. Biol. 2023, 6, 406.10.1038/s42003-023-04774-6. PubMed DOI PMC
Niu K.; Zhang J.; Ge S.; Li D.; Sun K.; You Y.; Qiu J.; Wang K.; Wang X.; Liu R.; Liu Y.; Li B.; Zhu Z. J.; Qu L.; Jiang H.; Liu N. ONE-seq: epitranscriptome and gene-specific profiling of NAD-capped RNA. Nucleic Acids Res. 2023, 51, e1210.1093/nar/gkac1136. PubMed DOI PMC
Morales-Filloy H. G.; Zhang Y.; Nübel G.; George S. E.; Korn N.; Wolz C.; Jäschke A. The 5′-NAD cap of RNAIII modulates toxin production in Staphylococcus aureus isolates. J. Bacteriol. 2020, 202, e00591-19.10.1128/JB.00591-19. PubMed DOI PMC
Walters R. W.; Matheny T.; Mizoue L. S.; Rao B. S.; Muhlrad D.; Parker R. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 480–485. 10.1073/pnas.1619369114. PubMed DOI PMC
Jiao X.; Doamekpor S. K.; Bird J. G.; Nickels B. E.; Tong L.; Hart R. P.; Kiledjian M. 5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding. Cell 2017, 168, 1015–1027.e10. 10.1016/j.cell.2017.02.019. PubMed DOI PMC
Wolfram-Schauerte M.; Höfer K. NAD-capped RNAs – a redox cofactor meets RNA. Trends Biochem. Sci. 2023, 48, 142–155. 10.1016/j.tibs.2022.08.004. PubMed DOI
Wolfram-Schauerte M.; Pozhydaieva N.; Grawenhoff J.; Welp L. M.; Silbern I.; Wulf A.; Billau F. A.; Glatter T.; Urlaub H.; Jäschke A.; Höfer K. A viral ADP-ribosyltransferase attaches RNA chains to host proteins. Nature 2023, 620, 1054–1062. 10.1038/s41586-023-06429-2. PubMed DOI PMC
Murray M. F.; Nghiem M.; Srinivasan A. HIV infection decreases intracellular nicotinamide adenine dinucleotide [NAD]. Biochem. Biophys. Res. Commun. 1995, 212, 126–131. 10.1006/bbrc.1995.1945. PubMed DOI
Rodríguez-Alba J. C.; Abrego-Peredo A.; Gallardo-Hernández C.; Pérez-Lara J.; Santiago-Cruz W.; Jiang W.; Espinosa E. HIV Disease Progression: Overexpression of the Ectoenzyme CD38 as a Contributory Factor?. Bioessays 2019, 41, e1800128.10.1002/bies.201800128. PubMed DOI PMC
Taylor E. W. The oxidative stress-induced niacin sink (OSINS) model for HIV pathogenesis. Toxicology 2010, 278, 124–130. 10.1016/j.tox.2009.10.018. PubMed DOI
Furlini G.; Re M. C.; La Placa M. Increased poly(ADP-ribose)polymerase activity in cells infected by human immunodeficiency virus type-1. Microbiologica 1991, 14, 141–148. PubMed
Murray M. F.; Srinivasan A. Nicotinamide inhibits HIV-1 in both acute and chronic in vitro infection. Biochem. Biophys. Res. Commun. 1995, 210, 954–959. 10.1006/bbrc.1995.1749. PubMed DOI
Murray M. F. Nicotinamide: an oral antimicrobial agent with activity against both Mycobacterium tuberculosis and human immunodeficiency virus. Clin. Infect. Dis. 2003, 36, 453–460. 10.1086/367544. PubMed DOI
Pelak K.; Goldstein D. B.; Walley N. M.; Fellay J.; Ge D.; Shianna K. V.; Gumbs C.; Gao X.; Maia J. M.; Cronin K. D.; et al. Host determinants of HIV-1 control in African Americans. J. Infect. Dis. 2010, 201, 1141–1149. 10.1086/651382. PubMed DOI PMC
Lu X. B.; Heimer J.; Rekosh D.; Hammarskjöld M. L. U1 small nuclear RNA plays a direct role in the formation of a rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 7598–7602. 10.1073/pnas.87.19.7598. PubMed DOI PMC
Mandal D.; Feng Z.; Stoltzfus C. M. Excessive RNA splicing and inhibition of HIV-1 replication induced by modified U1 small nuclear RNAs. J. Virol. 2010, 84, 12790–12800. 10.1128/JVI.01257-10. PubMed DOI PMC
Hamm J.; Darzynkiewicz E.; Tahara S. M.; Mattaj I. W. The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 1990, 62, 569–577. 10.1016/0092-8674(90)90021-6. PubMed DOI
Bird J. G.; Zhang Y.; Tian Y.; Panova N.; Barvík I.; Greene L.; Liu M.; Buckley B.; Krásný L.; Lee J. K.; Kaplan C. D.; Ebright R. H.; Nickels B. E. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature 2016, 535, 444.10.1038/nature18622. PubMed DOI PMC
Wilusz J. Putting an ‘End’ to HIV mRNAs: capping and polyadenylation as potential therapeutic targets. AIDS Res. Therapy 2013, 10, 31.10.1186/1742-6405-10-31. PubMed DOI PMC
Eckwahl M. J.; Arnion H.; Kharytonchyk S.; Zang T.; Bieniasz P. D.; Telesnitsky A.; Wolin S. L. Analysis of the human immunodeficiency virus-1 RNA packageome. RNA 2016, 22, 1228.10.1261/rna.057299.116. PubMed DOI PMC
Šimonová A.; Svojanovská B.; Trylčová J.; Hubálek M.; Moravčík O.; Zavřel M.; Pávová M.; Hodek J.; Weber J.; Cvačka J.; Pačes J.; Cahová H. LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion. Sci. Rep. 2019, 9, 8697.10.1038/s41598-019-45079-1. PubMed DOI PMC
Frindert J.; Zhang Y.; Nübel G.; Kahloon M.; Kolmar L.; Hotz-Wagenblatt A.; Burhenne J.; Haefeli W. E.; Jäschke A. Identification, Biosynthesis, and Decapping of NAD-Capped RNAs in B. subtilis. Cell Rep. 2018, 24, 1890–1901.e1898. 10.1016/j.celrep.2018.07.047. PubMed DOI
Sajic R.; Lee K.; Asai K.; Sakac D.; Branch D. R.; Upton C.; Cochrane A. Use of modified U1 snRNAs to inhibit HIV-1 replication. Nucleic Acids Res. 2006, 35, 247–255. 10.1093/nar/gkl1022. PubMed DOI PMC
Benoni R.; Culka M.; Hudeček O.; Gahurova L.; Cahová H. Dinucleoside Polyphosphates as RNA Building Blocks with Pairing Ability in Transcription Initiation. ACS Chem. Biol. 2020, 15, 1765–1772. 10.1021/acschembio.0c00178. PubMed DOI
Auffinger P.; Westhof E. (1998) Effects of Pseudouridylation on tRNA Hydration and Dynamics: A Theoretical Approach. In Modification and Editing of RNA, pp 103–112.
Newby M. I.; Greenbaum N. L. A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA 2001, 7, 833–845. 10.1017/S1355838201002308. PubMed DOI PMC
Grudzien-Nogalska E.; Wu Y.; Jiao X.; Cui H.; Mateyak M. K.; Hart R. P.; Tong L.; Kiledjian M. Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Nat. Chem. Biol. 2019, 15, 575–582. 10.1038/s41589-019-0293-7. PubMed DOI PMC
Sharma S.; Grudzien-Nogalska E.; Hamilton K.; Jiao X.; Yang J.; Tong L.; Kiledjian M. Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Nucleic Acids Res. 2020, 48, 6788–6798. 10.1093/nar/gkaa402. PubMed DOI PMC
Abdelraheim S. R.; Spiller D. G.; McLennan A. G. Mammalian NADH diphosphatases of the Nudix family: cloning and characterization of the human peroxisomal NUDT12 protein. Biochem. J. 2003, 374, 329–335. 10.1042/bj20030441. PubMed DOI PMC
Jiao X.; Chang J. H.; Kilic T.; Tong L.; Kiledjian M. A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol. Cell 2013, 50, 104–115. 10.1016/j.molcel.2013.02.017. PubMed DOI PMC
Carreras-Puigvert J.; Zitnik M.; Jemth A. S.; Carter M.; Unterlass J. E.; Hallström B.; Loseva O.; Karem Z.; Calderón-Montaño J. M.; Lindskog C.; et al. A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nat. Commun. 2017, 8, 1541.10.1038/s41467-017-01642-w. PubMed DOI PMC
Li Y.; Song M.; Kiledjian M. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. RNA 2011, 17, 419–428. 10.1261/rna.2439811. PubMed DOI PMC
Abdelraheim S. R.; Spiller D. G.; McLennan A. G. Mouse Nudt13 is a Mitochondrial Nudix Hydrolase with NAD(P)H Pyrophosphohydrolase Activity. Protein J. 2017, 36, 425–432. 10.1007/s10930-017-9734-x. PubMed DOI PMC
Duarte-Pereira S.; Matos S.; Oliveira J. L.; Silva R. M. Study of NAD-interacting proteins highlights the extent of NAD regulatory roles in the cell and its potential as a therapeutic target. J. Integr. Bioinform. 2023, 20, 20220049.10.1515/jib-2022-0049. PubMed DOI PMC
Baek A.; Lee G.-E.; Golconda S.; Rayhan A.; Manganaris A. A.; Chen S.; Tirumuru N.; Yu H.; Kim S.; Kimmel C.; Zablocki O.; Sullivan M. B.; Addepalli B.; Wu L.; Kim S. Single-molecule epitranscriptomic analysis of full-length HIV-1 RNAs reveals functional roles of site-specific m6As. Nat. Microbiol. 2024, 9, 1340.10.1038/s41564-024-01638-5. PubMed DOI PMC
Ringeard M.; Marchand V.; Decroly E.; Motorin Y.; Bennasser Y. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 2019, 565, 500–504. 10.1038/s41586-018-0841-4. PubMed DOI
Brenner C. Viral infection as an NAD+ battlefield. Nat. Metab. 2022, 4, 2–3. 10.1038/s42255-021-00507-3. PubMed DOI PMC