• This record comes from PubMed

Potentially toxic elements (PTEs) and ecological risk at waste disposal sites: An analysis of sanitary landfills

. 2024 ; 19 (5) : e0303272. [epub] 20240517

Language English Country United States Media electronic-ecollection

Document type Journal Article

This study presents an analysis of soil contamination caused by Ni, Zn, Cd, Cu, and Pb at municipal solid waste (MSW) landfills, with a focus on ecological risk assessment. The approach aims to assess how different landfill practices and environmental conditions affect soil contamination with potentially toxic elements (PTEs) and associated environmental risks. Soil samples were collected from MSW landfills in Poland and the Czech Republic. The research included a comprehensive assessment of PTEs in soils in the context of global environmental regulations. The degree of soil contamination by PTEs was assessed using indices: Geoaccumulation Index (Igeo), Single Pollution Index (Pi), Nemerow Pollution Index (PN), and Load Capacity of a Pollutant (PLI). The ecological risk was determined using the Risk of PTEs (ERi) and Sum of Individual Potential Risk Factors (ERI). The maximum values of the indicators observed for the Radiowo landfill were as follows: Igeo = 4.04 for Cd, Pi = 24.80 for Cd, PN = 18.22 for Cd, PLI = 2.66, ERi = 744 for Cd, ERI = 771.80. The maximum values of the indicators observed for the Zdounky landfill were as follows: Igeo = 1.04 for Cu, Pi = 3.10 for Cu, PN = 2.52 for Cu, PLI = 0.27, ERi = 25 for Cd, ERI = 41.86. The soils of the tested landfills were considered to be non-saline, with electrical conductivity (EC) values less than 2,000 μS/cm. Varying levels of PTEs were observed, and geostatistical analysis highlighted hotspots indicating pollution sources. Elevated concentrations of Cd in the soil indicated potential ecological risks. Concentrations of Cu and lead Pb were well below the thresholds set by the environmental legislation in several countries. In addition, Ni concentrations in the soils of both landfills indicated that the average levels were within acceptable limits. Principal Component Analysis (PCA) revealed common sources of PTEs. The identification of specific risk points at the Radiowo and Zdounky sites contributes to a better understanding of potential hazards in landfill environments. By establishing buffer zones and implementing regular maintenance programs, emerging environmental problems can be addressed in a timely manner.

See more in PubMed

Wei J, Li H, Liu J. Heavy metal pollution in the soil around municipal solid waste incinerators and its health risks in China. Environ Res. 2022;203:111871. doi: 10.1016/j.envres.2021.111871 PubMed DOI

Essien JP, Inam ED, Ikpe DI, Udofia GE, Benson NU. Ecotoxicological status and risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in Nigeria. Environ Nanotechnol, Monit Manage. 2019;11:100215. doi: 10.1016/j.enmm.2019.100215 DOI

de Souza VB, Hollas CE, Bortoli M, Manosso FC, de Souza DZ. Heavy metal contamination in soils of a decommissioned landfill, southern Brazil, ecological and health risk assessment. Chemosphere. 2023;139689. doi: 10.1016/j.chemosphere.2023.139689 PubMed DOI

Beinabaj SMH, Heydariyan H, Aleii HM, Hosseinzadeh A. Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon. 2023;9 (1). doi: 10.1016/j.heliyon.2023.e13017 PubMed DOI PMC

Fadhullah W, Imran NIN, Ismail SNS, Jaafar MH, Abdullah H. Household solid waste management practices and perceptions among residents in the East Coast of Malaysia. BMC Public Health. 2022;22(1):1–20. doi: 10.1186/s12889-021-12274-7 PubMed DOI PMC

Borah P, Gujre N, Rene ER, Rangan L, Paul RK, Karak T, et al.. Assessment of mobility and environmental risks associated with copper, manganese and zinc in soils of a dumping site around a Ramsar site. Chemosphere. 2020;254:126852. doi: 10.1016/j.chemosphere.2020.126852 PubMed DOI

Wang P, Wu D, You X, Li W, Xie B. Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills. Environ Pollut. 2019;255:113222. doi: 10.1016/j.envpol.2019.113222 PubMed DOI

Xie S, Ma Y, Strong PJ, Clarke WP. Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: the effect of pH and associated mechanisms. J Hazard Mater. 2015;299:577–583. doi: 10.1016/j.jhazmat.2015.07.065 PubMed DOI

Wdowczyk A, Szymańska-Pulikowska A. Analysis of the possibility of conducting a comprehensive assessment of landfill leachate contamination using physicochemical indicators and toxicity test. Ecotoxicol Environ Saf. 2021. a;221:112434. doi: 10.1016/j.ecoenv.2021.112434 PubMed DOI

Lin X, Ma Y, Chen T, Wang L, Takaoka M, Pan S, et al.. PCDD/Fs and heavy metals in the vicinity of landfill used for MSWI fly ash disposal: Pollutant distribution and environmental impact assessment. Environ Pollut. 2022;312:120083. doi: 10.1016/j.envpol.2022.120083 PubMed DOI

Podlasek A, Vaverková MD, Koda E, Jakimiuk A, Barroso PM. Characteristics and pollution potential of leachate from municipal solid waste landfills: Practical examples from Poland and the Czech Republic and a comprehensive evaluation in a global context. J Environ Manage. 2023;332:117328. doi: 10.1016/j.jenvman.2023.117328 PubMed DOI

Qian Y, Hu L, Wang Y, Xu K. Arsenic methylation behavior and microbial regulation mechanisms in landfill leachate saturated zones. Environ Pollut. 2023;320:121064. doi: 10.1016/j.envpol.2023.121064 PubMed DOI

Mukherjee S, Mukhopadhyay S, Hashim MA, Sen Gupta B. Contemporary environmental issues of landfill leachate: assessment and remedies. Crit Rev Environ Sci Technol. 2015;45(5): 472–590.

Jakimiuk A, Matsui Y, Podlasek A, Vaverková MD. Assessment of landfill protection systems in Japan-a case study. Acta Scientiarum Polonorum. Architectura. 2022;21(4): 21–31. doi: 10.22630/ASPA.2022.21.4.27 DOI

Wang Q, Xie H, Peng Y, Mohammad A, Singh DN. VOCs emission from a final landfill cover system induced by ground surface air temperature and barometric pressure fluctuation. Environ Pollut. 2023;122391. doi: 10.1016/j.envpol.2023.122391 PubMed DOI

Vaverková MD. Landfill impacts on the environment. Geosciences. 2019;9(10):431. doi: 10.3390/geosciences9100431 DOI

Vaverková MD. Impact assessment of the municipal solid landfill on environment: A case study. Acta Scientiarum Polonorum. Architectura. 2019;18(2), 11–20. doi: 10.22630/ASPA.2019.18.2.17 DOI

Wdowczyk A, Szymańska-Pulikowska A. Comparison of landfill leachate properties by LPI and phytotoxicity-a case study. Front Environ Sci. 2021. b;9:693112. doi: 10.3389/fenvs.2021.693112 DOI

Qi G, Jia Y, Liu W, Wei Y, Du B, Fang W, et al.. Leaching behavior and potential ecological risk of heavy metals in Southwestern China soils applied with sewage sludge compost under acid precipitation based on lysimeter trials. Chemosphere. 2020;249:126212. doi: 10.1016/j.chemosphere.2020.126212 PubMed DOI

Fijałkowska G, Wiśniewska M, Szewczuk-Karpisz K, Jędruchniewicz K, Oleszczuk P. Comparison of lead (II) ions accumulation and bioavailability on the montmorillonite and kaolinite surfaces in the presence of polyacrylamide soil flocculant. Chemosphere. 2021;276:130088. doi: 10.1016/j.chemosphere.2021.130088 PubMed DOI

Essien JP, Ikpe DI, Inam ED, Okon AO, Ebong GA, Benson NU. Occurrence and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS One. 2022;17(2):e0263279. doi: 10.1371/journal.pone.0263279 PubMed DOI PMC

Gui H, Yang Q, Lu X, Wang H, Gu Q, Martín JD. Spatial distribution, contamination characteristics and ecological-health risk assessment of toxic heavy metals in soils near a smelting area. Environ Res. 2023;222:115328. doi: 10.1016/j.envres.2023.115328 PubMed DOI

Nartowska E. The risk of contamination of the first aquifer in the central part of the Świętokrzyskie Voivodship (MHP-814 Piekoszów). Acta Sci Pol Arch. 2023;22(1): 58–67. doi: 10.22630/ASPA.2023.22.7 DOI

Zhen Z, Wang S, Luo S, Ren L, Liang Y, Yang R, et al.. Significant impacts of both total amount and availability of heavy metals on the functions and assembly of soil microbial communities in different land use patterns. Front Microbiol. 2019;10:2293. doi: 10.3389/fmicb.2019.02293 PubMed DOI PMC

Li M, Ren L, Zhang J, Luo L, Qin P, Zhou Y, et al.. Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Sci Total Environ. 2019;651: 2166–2174. doi: 10.1016/j.scitotenv.2018.10.152 PubMed DOI

Gworek B, Dmuchowski W, Gozdowski D, Koda E, Osiecka R, Borzyszkowski J. Influence of a municipal waste landfill on the spatial distribution of mercury in the environment. PLoS One. 2015;10(7):e0133130. doi: 10.1371/journal.pone.0133130 PubMed DOI PMC

Alsherif EA, Al-Shaikh TM, AbdElgawad H. Heavy metal effects on biodiversity and stress responses of plants inhabiting contaminated soil in Khulais, Saudi Arabia. Biol. 2022;11(2):164. doi: 10.3390/biology11020164 PubMed DOI PMC

Khan Z, Xianting F, Khan MN, Khan MA, Zhang K, Fu Y, et al.. The toxicity of heavy metals and plant signaling facilitated by biochar application: Implications for stress mitigation and crop production. Chemosphere. 2022;136466. doi: 10.1016/j.chemosphere.2022.136466 PubMed DOI

Githaiga KB, Njuguna SM, Gituru RW, Yan X. Water quality assessment, multivariate analysis and human health risks of heavy metals in eight major lakes in Kenya. J Environ Manage. 2021;297:113410. doi: 10.1016/j.jenvman.2021.113410 PubMed DOI

Tian K, Wu Q, Liu P, Hu W, Huang B, Shi B, et al.. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ Int. 2020;136:105512. doi: 10.1016/j.envint.2020.105512 PubMed DOI

Zhang H, Zhao Y, Wang Z, Liu Y. Distribution characteristics, bioaccumulation and trophic transfer of heavy metals in the food web of grassland ecosystems. Chemosphere. 2021;278:130407. doi: 10.1016/j.chemosphere.2021.130407 PubMed DOI

Safari Y, Delavar MA. The influence of soil pollution by heavy metals on the land suitability for irrigated wheat farming in Zanjan region, northwest Iran. Arabian J Geosci. 2019;12: 1–10. doi: 10.1007/s12517-018-4190-2 DOI

Song Y, Kirkwood N, Maksimović Č, Zheng X, O’Connor D, Jin Y, et al.. Nature-based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci Total Environ. 2019;663: 568–579. doi: 10.1016/j.scitotenv.2019.01.347 PubMed DOI

Kotowska U, Kapelewska J, Sawczuk R. Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. Environ Pollut. 2020;267:115643. doi: 10.1016/j.envpol.2020.115643 PubMed DOI

Jakimiuk A. Review of technical methods landfill sealing and reclamation in the world. Acta Scientiarum Polonorum Architectura. 2022;21(1): 41–50. doi: 10.22630/ASPA.2022.21.1.5 DOI

Ismanto A, Hadibarata T, Widada S, Indrayanti E, Ismunarti DH, Safinatunnajah N, et al.. Groundwater contamination status in Malaysia: level of heavy metal, source, health impact, and remediation technologies. Bioprocess Biosyst Eng. 2023;46(3): 467–482. doi: 10.1007/s00449-022-02826-5 PubMed DOI

Zou J, Dai W, Gong S, Ma Z. Analysis of spatial variations and sources of heavy metals in farmland soils of Beijing suburbs. PLoS One. 2015;10(2):e0118082. doi: 10.1371/journal.pone.0118082 PubMed DOI PMC

Mazumder P, Dash S, Khwairakpam M, Kalamdhad AS. Ecological and health risk assessment associated with translocation of heavy metals in Lycopersicum esculentum from farmland soil treated with different composts. J Environ Manage. 2023;344:118577. doi: 10.1016/j.jenvman.2023.118577 PubMed DOI

Sabet Aghlidi P, Cheraghi M, Lorestani B, Sobhanardakani S, & Merrikhpour H. Analysis, spatial distribution and ecological risk assessment of arsenic and some heavy metals of agricultural soils, case study: South of Iran. Journal of Environmental Health Science and Engineering 2020;18:665–676. doi: 10.1007/s40201-020-00492-x PubMed DOI PMC

Hosseini NS, Sobhanardakani S, Cheraghi M, Lorestani B, & Merrikhpour H. Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. Environmental Science and Pollution Research 2020;27:13301–13314. doi: 10.1007/s11356-020-07874-6 PubMed DOI

Hosseini NS, & Sobhanardakani S. Concentration, sources, potential ecological and human health risks assessment of trace elements in roadside soil in Hamedan metropolitan, west of Iran. International Journal of Environmental Analytical Chemistry 2022; 1–24. doi: 10.1080/03067319.2022.2135997 DOI

OpenStreetMap. OpenStreetMap. Available at: https://www.openstreetmap.org/ (Last access: 20 December 2023). 2023.

Koda E, Sieczka A, Osinski P. Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability. 2016;8(12):1253. doi: 10.3390/su8121253 DOI

Koda E, Miszkowska A, Sieczka A. Levels of organic pollution indicators in groundwater at the old landfill and waste management site. Appl Sci. 2017;7(6):638. doi: 10.3390/app7060638 DOI

Podlasek A, Jakimiuk A, Vaverková MD, Koda E. Monitoring and assessment of groundwater quality at landfill sites: selected case studies of Poland and the Czech Republic. Sustainability. 2021;13(14):7769. doi: 10.3390/su13147769 DOI

Vaverková MD. Assessment of selected landfill impacts on selected segments of the environment–a case study. Acta Scientiarum Polonorum. Architectura, 2023;22,38–49. https://orcid.org/0000-0002-2384-6207

Hussein M, Yoneda K, Mohd-Zaki Z, Amir A, & Othman N. Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere. 2021:267,128874. doi: 10.1016/j.chemosphere.2020.128874 PubMed DOI

Wang S, Han Z, Wang J, He X, Zhou Z, & Hu X. Environmental risk assessment and factors influencing heavy metal concentrations in the soil of municipal solid waste landfills. Waste Management. 2022:139,330–340. doi: 10.1016/j.wasman.2021.11.036 PubMed DOI

Polish Committee for Standardization (PKN). Soil quality—Sampling—Part 1: Principles for developing sampling programmes. PN-ISO 10381–1. Warsaw, Poland: PKN; 2008.

Polish Committee for Standardization (PKN). Soil quality—Sampling—Part 2: Principles of sampling techniques. PN-ISO 10381–2. Warsaw, Poland: PKN; 2007.

Polish Committee for Standardization (PKN). Soil quality—Sampling—Part 3: Safety rules. PN-ISO 10381–3. Warsaw, Poland: PKN; 2007.

Polish Committee for Standardization (PKN). Soil quality—Sampling—Part 5: Principles of practice when testing urban and industrial sites for soil contamination. PN-ISO 10381–5. Warsaw, Poland: PKN; 2009.

Polish Committee for Standardization (PKN). Geotechnical investigation and testing—Identification and classification of soil—Part 1: Identification and description. PN-EN ISO 14688–1. Warsaw, Poland: PKN; 2018.

U.S. Environmental Protection Agency (USEPA). Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils. Revision 1. Washington, DC; 2007.

Podlasek A, Vaverková MD, Jakimiuk A, & Koda E. A comprehensive investigation of geoenvironmental pollution and health effects from municipal solid waste landfills. Environmental Geochemistry and Health. 2024;46(3): 97. doi: 10.1007/s10653-024-01852-4 PubMed DOI PMC

PN-EN ISO 10390. Soil, treated biowaste and sewage sludge—Determination of pH. Polish Committee for Standardization (PKN), Warsaw, Poland; 2022.

Bruce RC, Rayment GE. Analytical Methods and Interpretations Used by the Agricultural Chemistry Branch for Soil and Land Use Surveys. Queensland Department of Primary Industries. Bulletin QB8 (2004), Indooroopilly; 1982.

Richards LA. Diagnosis and improvement of saline and alkaline soils. Agriculture Handbook 60, U.S. Department of Agriculture, Washington, D.C.; 1954:69–82.

Regulation of the Minister of the Environment on the method of assessing the pollution of the Earth’s surface dated on September 1, 2016. Journal of Laws 2016, item 1395. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20160001395, 20 April 2023.

Ministry of the Environment of the Czech Republic. Decree No. 153/2016 Coll., on determining the details of agricultural soil quality protection for ordinary soils.

Muller GM. Index of geoaccumulation in sediments of the Rhine River. Geojournal. 1969;2: 108–118.

Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980;14(8): 975–1001.

Czarnowska K. The total content of heavy metals in parent rocks as a geochemical background of soils. Year. Soil. 1996;47:43–50 (in Polish).

Grzebisz W, Ciesla L, Komisarek J, Potarzycki J. Geochemical assessment of the heavy metals pollution of urban soils. Polish Journal of Environmental Studies. 2002;11(5):493–500.

Kobierski M, Dabkowska-Naskret H. Local background concentration of heavy metals in various soil types formed from glacial till of the Inowroclawska Plain. J Elementol. 2012;17(4).

Pasieczna A. Atlas of urban soil pollution in Poland. Polish Geological Institute, Warsaw. 2003. (in Polish).

Bieniek A. Zawartość metali ciężkich w glebach różnych form geomorfologicznych terenu okolic Olsztyna. Zeszyty Problemowe Postępów Nauk Rolniczych. 2005;505:59–67.

Zgłobicki W, Lata L, Plak A, Reszka M. Geochemical and statistical approach to evaluate background concentrations of Cd, Cu, Pb, and Zn (case study: Eastern Poland). Environ Earth Sci. 2011;62:347–355.

Vácha R, Sáňka M, Skála J, Čechmánková J, Horváthová V. Soil contamination health risks in Czech proposal of soil protection legislation. In: Larramendy M, ed. Environmental Health Risk. 1st ed. 2016:57–75.

Sekudewicz I, Syczewski M, Rohovec J, Matoušková Š, Kowalewska U, Blukis R. et al.. Geochemical behavior of heavy metals and radionuclides in a pit lake affected by acid mine drainage (AMD) in the Muskau Arch (Poland). Science of the Total Environment. 2024:908,168245. doi: 10.1016/j.scitotenv.2023.168245 PubMed DOI

Nemerow NL. Scientific stream pollution analysis. McGraw-Hill, New York; 1974.

Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW. Problems in the assessment of heavy metal level in estuaries and the formation of a pollution index. Helolaender Meesesunter. 1980;33: 566–575.

Rabiej M. Statistical analysis with Statistica and Excel; Helion: Gliwice, Poland; 2018. (In Polish).

John K, Afu SM, Isong IA, Aki EE, Kebonye NM, Ayito EO, et al.. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. International Journal of Environmental Science and Technology. 2021;8: 3327–3342. doi: 10.1007/s13762-020-03089-x DOI

Subba Rao N, Sunitha B, Adimalla N, Chaudhary M. Quality criteria for groundwater use from a rural part of Wanaparthy District, Telangana State, India, through ionic spatial distribution (ISD), entropy water quality index (EWQI) and principal component analysis (PCA). Environmental Geochemistry and Health. 2020;42: 579–599. doi: 10.1007/s10653-019-00393-5 PubMed DOI

Singh S, Kasana SS. Estimation of soil properties from the EU spectral library using long short-term memory networks. Geoderma Regional. 2019;18:e00233. doi: 10.1016/j.geodrs.2019.e00233 DOI

Maji KJ, Chaudhary R. Principal component analysis for water quality assessment of the Ganga River in Uttar Pradesh, India. Water Resources. 2019;46: 789–806. Available from: doi: 10.1134/S0097807819050129 DOI

Tajudin NS, Zulkifli M, Miskon MF, Anuar MI, Hashim Z, Faudzi F, et al.. Integrated Approach of Heavy Metal Evaluation Using Geostatistical and Pollution Assessment Index in Soil of Bauxite Mining Area. Pertanika Journal of Science & Technology. 2022;30(2). Available from: doi: 10.47836/pjst.30.2.38 DOI

Njayou MM, Ngounouno Ayiwouo M, Ngueyep Mambou LL, Ngounouno I. Using geostatistical modeling methods to assess concentration and spatial variability of trace metals in soils of the abandoned gold mining district of Bindiba (East Cameroon). Modeling Earth Systems and Environment. 2023;9(1):1401–1415. Available from: doi: 10.1007/s40808-022-01560-x DOI

Akoto O, Nimako C, Asante J, Bailey D, Bortey-Sam N. Spatial distribution, exposure, and health risk assessment of bioavailable forms of heavy metals in surface soils from abandoned landfill sites in Kumasi, Ghana. Human and Ecological Risk Assessment: An International Journal. 2019;25(7):1870–1885. Available from: doi: 10.1080/10807039.2018.1476125 DOI

Nartowska E, Kozłowski T, Kolankowska M. The changes in the microstructure of ion-exchanged clays. In: E3S Web of Conferences, Vol. 17, p. 00063. EDP Sciences. 2017. Available from: doi: 10.1051/e3sconf/20171700063 DOI

Yong LL, Anggraini V, Taha MR, Raghunandan ME. Short-and long-term transports of heavy metals through earthen liners: physical and numerical modeling. Bulletin of Engineering Geology and the Environment. 2022;81(1):69. Available from: doi: 10.1007/s10064-022-02569-3 DOI

Tume P, Cornejo Ó, Rubio C, Sepúlveda B, Roca N, Bech J. Analysis and Evaluation of Concentrations of Potentially Toxic Elements in Landfills in the Araucanía Region, Chile. Minerals. 2023;13(8):1033. Available from: doi: 10.3390/min13081033 DOI

Kanmani S, Gandhimathi R. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Applied water science. 2013;3: 193–205. Available from: doi: 10.1007/s13201-012-0072-z DOI

Vijayalakshmi P, Raji PK, Eshanthini P, Bennetm RR V, Ravi R. Analysis of soil characteristics near the solid waste landfill site. Nature Environment and Pollution Technology. 2020;19(3): 1019–1027. Available from: doi: 10.46488/NEPT.2020.v19i03.012 DOI

Johar P, Singh D, Kumar A. Spatial variations of heavy metal contamination and associated risks around an unplanned landfill site in India. Environmental Monitoring and Assessment. 2020;192:335. Available from: doi: 10.1007/s10661-020-08315-0 PubMed DOI

Kubier A, Wilkin RT, Pichler T. Cadmium in soils and groundwater: a review. Applied Geochemistry. 2019;108:104388. Available from: doi: 10.1016/j.apgeochem.2019.104388 PubMed DOI PMC

Odom F, Gikunoo E, Arthur EK, Agyemang FO, Mensah-Darkwa K. Stabilization of heavy metals in soil and leachate at Dompoase landfill site in Ghana. Environmental Challenges. 2021;5:100308. doi: 10.1016/j.envc.2021.100308 DOI

Podlasek A, Vaverková MD, Koda E, Paleologos EK, Adamcova D, Bilgin A. Temporal variations in groundwater chemical composition of landfill areas in the vicinity of agricultural lands: a case study of the Zdounky and Petrůvky landfills in the Czech Republic. Desalination and Water Treatment. 2022;275: 131–146. Available from: doi: 10.5004/dwt.2022.28949 DOI

Xiong X, Liu X, Iris KM, Wang L, Zhou J, Sun X, et al.. Potentially toxic elements in solid waste streams: Fate and management approaches. Environmental pollution. 2019;253: 680–707. Available from: doi: 10.1016/j.envpol.2019.07.012 PubMed DOI

El-Saadony MT, Saad AM, El-Wafai NA, Abou-Aly HE, Salem HM, Solman SM, et al.. Hazardous wastes and management strategies of landfill leachates: A comprehensive review. Environmental Technology & Innovation. 2023;31:103150. Available from: doi: 10.1016/j.eti.2023.103150 DOI

Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, et al.. Environmental behavior, human health effect and pollution control of heavy metal (loid)s towards full life cycle processes. Eco-Environment & Health. 2022;1(4): 229–243. Available from: doi: 10.1016/j.eehl.2022.11.003 PubMed DOI PMC

Fronczyk J, Sieczka A, Lech M, Radziemska M, Lechowicz Z. Transport of Nitrogen Compounds through Subsoils in Agricultural Areas: Column Tests. Polish Journal of Environmental Studies. 2016;25(4): 1505–1514. Available from: doi: 10.15244/pjoes/62340 DOI

Nartowska E, Kozłowski T, Kolankowska M. Exchangeable cations (Cu2+, Zn2+) effects on unfrozen water content in clay-water system using 1H NMR method. Cold Regions Science and Technology. 2021;192:103403. Available from: doi: 10.1016/j.coldregions.2021.103403 DOI

Wdowczyk A, Szymańska-Pulikowska A, Gałka B. Removal of selected pollutants from landfill leachate in constructed wetlands with different filling. Bioresource Technology. 2022;353:127136. Available from: doi: 10.1016/j.biortech.2022.127136 PubMed DOI

Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, et al.. Mobilization of contaminants: Potential for soil remediation and unintended consequences. Science of The Total Environment. 2022;839:156373. Available from: doi: 10.1016/j.scitotenv.2022.156373 PubMed DOI

Ahmad W, Alharthy RD, Zubair M, Ahmed M, Hameed A, Rafique S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports. 2021;11(1):17006. Available from: doi: 10.1038/s41598-021-94616-4 PubMed DOI PMC

Ma S, Zhou C, Pan J, Yang G, Sun C, Liu Y, et al.. Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks. J Clean Prod. 2022;333:130234. Available from: doi: 10.1016/j.jclepro.2021.130234 DOI

Chaudhary DK, Bajagain R, Seo D, Hong Y, Han S. Depth-dependent microbial communities potentially mediating mercury methylation and various geochemical processes in anthropogenically affected sediments. Environ Res. 2023;237:116888. Available from: doi: 10.1016/j.envres.2023.116888 PubMed DOI

Singh A, Chandel MK. Mobility and environmental fate of heavy metals in fine fraction of dumped legacy waste: Implications on reclamation and ecological risk. J Environ Manage. 2022;304:114206. Available from: doi: 10.1016/j.jenvman.2021.114206 PubMed DOI

Wu G, Wang L, Yang R, Hou W, Zhang S, Guo X, et al.. Pollution characteristics and risk assessment of heavy metals in the soil of a construction waste landfill site. Ecological Informatics. 2022;70:101700. doi: 10.1016/j.ecoinf.2022.101700 DOI

Zhou P, Zeng D, Wang X, Tai L, Zhou W, Zhuoma Q, et al.. Pollution levels and risk assessment of heavy metals in the soil of a landfill site: A case study in Lhasa, Tibet. International Journal of Environmental Research and Public Health. 2022;19(17):10704. doi: 10.3390/ijerph191710704 PubMed DOI PMC

Karimian S, Shekoohiyan S, Moussavi G. Health and ecological risk assessment and simulation of heavy metal-contaminated soil of Tehran landfill. RSC Advances. 2021;11(14):8080–8095. doi: 10.1039/d0ra08833a PubMed DOI PMC

Wieczorek J, Baran A, Urbański K, Mazurek R, Klimowicz-Pawlas A. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ Geochem Health. 2018;40: 2325–2342. Available from: doi: 10.1007/s10653-018-0100-5 PubMed DOI PMC

Guo G, Wang Y, Zhang D, Li K, Lei M. Human health risk apportionment from potential sources of heavy metals in agricultural soils and associated uncertainty analysis. Environ Geochem Health. 2023;45(3): 881–897. Available from: doi: 10.1007/s10653-022-01243-7 PubMed DOI

Rashid A, Schutte BJ, Ulery A, Deyholos MK, Sanogo S, Lehnhoff EA, et al.. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy. 2023;13(6):1521. Available from: doi: 10.3390/agronomy13061521 DOI

Obiri-Nyarko F, Duah AA, Karikari AY, Agyekum WA, Manu E, Tagoe R. Assessment of heavy metal contamination in soils at the Kpone landfill site, Ghana: Implication for ecological and health risk assessment. Chemosphere. 2021;282:131007. Available from: doi: 10.1016/j.chemosphere.2021.131007 PubMed DOI

Linnik VG, Bauer TV, Minkina TM, Mandzhieva SS, Mazarji M. Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environ Geochem Health. 2022;44(2): 319–333. Available from: doi: 10.1007/s10653-020-00688-y PubMed DOI

Dat ND, Nguyen LSP, Vo TDH, Van Nguyen T, Do TTL, Tran ATK, et al.. Pollution characteristics, associated risks, and possible sources of heavy metals in road dust collected from different areas of a metropolis in Vietnam. Environ Geochem Health. 2023: 1–19. Available from: doi: 10.1007/s10653-023-01696-4 PubMed DOI

Islamd MS, Idris AM, Islam ARMT, Phoungthong K, Ali MM, & Kabir MH. Geochemical variation and contamination level of potentially toxic elements in land-uses urban soils. International Journal of Environmental Analytical Chemistry 2023; 103(19): 7859–7876.

Bolan S, Padhye LP, Kumar M, Antoniadis V, Sridharan S, Tang Y, et al.. Review on distribution, fate, and management of potentially toxic elements in incinerated medical wastes. Environmental Pollution 2023; 321: 121080. doi: 10.1016/j.envpol.2023.121080 PubMed DOI

Alghamdi AG, Aly AA, & Ibrahim HM. Assessing the environmental impacts of municipal solid waste landfill leachate on groundwater and soil contamination in western Saudi Arabia. Arabian Journal of Geosciences 2021; 14(5): 350. doi: 10.1007/s12517-021-06583-9 DOI

Caporale AG, Porfido C, Roggero PP, Di Palma A, Adamo P, Pinna MV, et al.. Long-term effect of municipal solid waste compost on the recovery of a potentially toxic element (PTE)-contaminated soil: PTE mobility, distribution and bioaccessibility. Environmental Science and Pollution Research 2023; 30(58): 122858–122874. doi: 10.1007/s11356-023-30831-y PubMed DOI PMC

Minkina T, Konstantinova E, Bauer T, Mandzhieva S, Sushkova S, Chaplygin V, et al.. Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia. Environmental Geochemistry and Health 2021; 43: 2285–2300. doi: 10.1007/s10653-020-00666-4 PubMed DOI

Agyeman PC, John K, Kebonye NM, Borůvka L, Vašát R, Drábek O, et al.. Human health risk exposure and ecological risk assessment of potentially toxic element pollution in agricultural soils in the district of Frydek Mistek, Czech Republic: a sample location approach. Environmental Sciences Europe 2021; 33: 1–25. doi: 10.1186/s12302-021-00577-w DOI

Zacháry D, Jordan G, Völgyesi P, Bartha A, & Szabó C. Urban geochemical mapping for spatial risk assessment of multisource potentially toxic elements—a case study in the city of Ajka, Hungary. Journal of Geochemical Exploration 2015; 158: 186–200. doi: 10.1016/j.gexplo.2015.07.015 DOI

Bineshpour M, Payandeh K, Nazarpour A, & Sabzalipour S. Status, source, human health risk assessment of potential toxic elements (PTEs), and Pb isotope characteristics in urban surface soil, case study: Arak city, Iran. Environmental Geochemistry and Health 2021; 43: 4939–4958. doi: 10.1007/s10653-020-00778-x PubMed DOI

Kolawole TO, Iyiola O, Ibrahim H, & Isibor RA. Contamination, ecological and health risk assessments of potentially toxic elements in soil around a municipal solid waste disposal facility in Southwestern Nigeria. Journal of Trace Elements and Minerals. 2023; 5: 100083. doi: 10.1016/j.jtemin.2023.100083 DOI

Nieder R, & Benbi DK. Potentially toxic elements in the environment–a review of sources, sinks, pathways and mitigation measures. Reviews on Environmental Health. 2023. doi: 10.1515/reveh-2022-0161 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...