• This record comes from PubMed

SPEED: an integrated, smartphone-operated, handheld digital PCR Device for point-of-care testing

. 2024 ; 10 () : 62. [epub] 20240520

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

This study elaborates on the design, fabrication, and data analysis details of SPEED, a recently proposed smartphone-based digital polymerase chain reaction (dPCR) device. The dPCR chips incorporate partition diameters ranging from 50 μm to 5 μm, and these partitions are organized into six distinct blocks to facilitate image processing. Due to the superior thermal conductivity of Si and its potential for mass production, the dPCR chips were fabricated on a Si substrate. A temperature control system based on a high-power density Peltier element and a preheating/cooling PCR protocol user interface shortening the thermal cycle time. The optical design employs four 470 nm light-emitting diodes as light sources, with filters and mirrors effectively managing the light emitted during PCR. An algorithm is utilized for image processing and illumination nonuniformity correction including conversion to a monochromatic format, partition identification, skew correction, and the generation of an image correction mask. We validated the device using a range of deoxyribonucleic acid targets, demonstrating its potential applicability across multiple fields. Therefore, we provide guidance and verification of the design and testing of the recently proposed SPEED device.

See more in PubMed

Saiki RK, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–1354. doi: 10.1126/science.2999980. PubMed DOI

Zhu H, et al. PCR past, present and future. Biotechniques. 2020;69:317–325. doi: 10.2144/btn-2020-0057. PubMed DOI PMC

Vogelstein B, Kinzler KW. Digital PCR. Proc. Natl. Acad. Sci. 1999;96:9236. doi: 10.1073/pnas.96.16.9236. PubMed DOI PMC

Ahrberg CD, et al. Plasmonic heating-based portable digital PCR system. Lab Chip. 2020;20:3560–3568. doi: 10.1039/D0LC00788A. PubMed DOI

Hindson CM, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods. 2013;10:1003–1005. doi: 10.1038/nmeth.2633. PubMed DOI PMC

Gaňová, M., Zhang, H., Zhu, H., Korabečná, M. & Neužil, P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens. Bioelectron. 181, 113155 (2021). PubMed

Conte D, et al. Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR. BMC Genom. 2015;16:849. doi: 10.1186/s12864-015-2097-9. PubMed DOI PMC

Miotto E, et al. Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen- and TaqMan-based chemistries. Cancer Epidemiol. Biomark. Prev. 2014;23:2638. doi: 10.1158/1055-9965.EPI-14-0503. PubMed DOI

Shen F, Du W, Kreutz JE, Fok A, Ismagilov RF. Digital PCR on a SlipChip. Lab Chip. 2010;10:2666–2672. doi: 10.1039/c004521g. PubMed DOI PMC

Heyries KA, et al. Megapixel digital PCR. Nat. Methods. 2011;8:649–651. doi: 10.1038/nmeth.1640. PubMed DOI

Yu Z, et al. Self-partitioning SlipChip for slip-induced droplet formation and human papillomavirus viral load quantification with digital LAMP. Biosens. Bioelectron. 2020;155:112107. doi: 10.1016/j.bios.2020.112107. PubMed DOI

Kanchi S, Sabela MI, Mdluli PS, Bisetty K. Smartphone based bioanalytical and diagnosis applications: a review. Biosens. Bioelectron. 2018;102:136–149. doi: 10.1016/j.bios.2017.11.021. PubMed DOI

Gou T, et al. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy. Biosens. Bioelectron. 2018;120:144–152. doi: 10.1016/j.bios.2018.08.030. PubMed DOI

Liu X, et al. Smartphone integrated handheld (SPEED) digital polymerase chain reaction device. Biosens. Bioelectron. 2023;232:115319. doi: 10.1016/j.bios.2023.115319. PubMed DOI

Consul PC, Jain GC. A generalization of the Poisson distribution. Technometrics. 1973;15:791–799. doi: 10.1080/00401706.1973.10489112. DOI

Basu AS. Digital assays part I: partitioning statistics and digital PCR. SLAS TECHNOLOGY: Translat. Life Sci. Innov. 2017;22:369–386. doi: 10.1177/2472630317705680. PubMed DOI

Dong L, et al. Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci. Rep. 2015;5:13174. doi: 10.1038/srep13174. PubMed DOI PMC

Balram KC, et al. The nanolithography toolbox. J. Res. Natl. Inst. 2016;121:464–476. doi: 10.6028/jres.121.024. PubMed DOI PMC

Li H, et al. Versatile digital polymerase chain reaction chip design, fabrication, and image processing. Sens. Actuators B Chem. 2019;283:677–684. doi: 10.1016/j.snb.2018.12.072. DOI

Yan Z, et al. An image-to-answer algorithm for fully automated digital PCR image processing. Lab Chip. 2022;22:1333–1343. doi: 10.1039/D1LC01175H. PubMed DOI

Firouzi F, et al. Internet-of-Things and big data for smarter healthcare: from device to architecture, applications and analytics. Future Gener. Comput. Syst. 2018;78:583–586. doi: 10.1016/j.future.2017.09.016. DOI

Paulovich FV, De Oliveira MCF, Oliveira ON., Jr A future with ubiquitous sensing and intelligent systems. ACS Sens. 2018;3:1433–1438. doi: 10.1021/acssensors.8b00276. PubMed DOI

Kulkarni MB, Goyal S, Dhar A, Sriram D, Goel S. Miniaturized and IoT enabled continuous-flow-based microfluidic PCR device for DNA amplification. IEEE Trans. Nanobiosci. 2021;21:97–104. doi: 10.1109/TNB.2021.3092292. PubMed DOI

Zhu H, et al. IoT PCR for pandemic disease detection and its spread monitoring. Sens. Actuators B Chem. 2020;303:127098. doi: 10.1016/j.snb.2019.127098. PubMed DOI PMC

Ardalan S, Hosseinifard M, Vosough M, Golmohammadi H. Towards smart personalized perspiration analysis: an IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens. Bioelectron. 2020;168:112450. doi: 10.1016/j.bios.2020.112450. PubMed DOI

Neuzil, P., Sun, W., Karasek, T. & Manz, A. Nanoliter-sized overheated reactor. Appl. Phys. Lett. 106, 024104 (2015).

Svatoš V, Gablech I, Pekárek J, Klempa J, Neužil P. Precise determination of thermal parameters of a microbolometer. Infrared Phys. Technol. 2018;93:286–290. doi: 10.1016/j.infrared.2018.07.037. DOI

Neuzil P, Cheng F, Soon JBW, Qian LL, Reboud J. Non-contact fluorescent bleaching-independent method for temperature measurement in microfluidic systems based on DNA melting curves. Lab Chip. 2010;10:2818–2821. doi: 10.1039/c005243d. PubMed DOI

Ni S, Bu Y, Zhu H, Neuzil P, Yobas L. A Sub-nL Chip Calorimeter and Its Application to the Measurement of the photothermal transduction efficiency of plasmonic nanoparticles. J. Microelectromech. Syst. 2021;30:759–769. doi: 10.1109/JMEMS.2021.3096524. DOI

Zhu, H. et al. Heat transfer time determination based on DNA melting curve analysis. Microfluid. Nanofluidics24, 1–8 (2020).

Gaňová M, et al. Temperature non-uniformity detection on dPCR chips and temperature sensor calibration. RSC Adv. 2022;12:2375–2382. doi: 10.1039/D1RA08138A. PubMed DOI PMC

Zhang H, et al. Digital PCR system development accelerator—A methodology to emulate dPCR results. Sens. Actuators B Chem. 2022;358:131527. doi: 10.1016/j.snb.2022.131527. DOI

Laššáková S, et al. Rapid non-invasive prenatal screening test for trisomy 21 based on digital droplet PCR. Sci. Rep. 2023;13:22948. doi: 10.1038/s41598-023-50330-x. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Microfluidics chips fabrication techniques comparison

. 2024 Nov 20 ; 14 (1) : 28793. [epub] 20241120

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...