SPEED: an integrated, smartphone-operated, handheld digital PCR Device for point-of-care testing
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
38770032
PubMed Central
PMC11102901
DOI
10.1038/s41378-024-00689-2
PII: 689
Knihovny.cz E-resources
- Keywords
- Electrical and electronic engineering, Microfluidics,
- Publication type
- Journal Article MeSH
This study elaborates on the design, fabrication, and data analysis details of SPEED, a recently proposed smartphone-based digital polymerase chain reaction (dPCR) device. The dPCR chips incorporate partition diameters ranging from 50 μm to 5 μm, and these partitions are organized into six distinct blocks to facilitate image processing. Due to the superior thermal conductivity of Si and its potential for mass production, the dPCR chips were fabricated on a Si substrate. A temperature control system based on a high-power density Peltier element and a preheating/cooling PCR protocol user interface shortening the thermal cycle time. The optical design employs four 470 nm light-emitting diodes as light sources, with filters and mirrors effectively managing the light emitted during PCR. An algorithm is utilized for image processing and illumination nonuniformity correction including conversion to a monochromatic format, partition identification, skew correction, and the generation of an image correction mask. We validated the device using a range of deoxyribonucleic acid targets, demonstrating its potential applicability across multiple fields. Therefore, we provide guidance and verification of the design and testing of the recently proposed SPEED device.
Bioinspired Engineering and Biomechanics Center Xi'an Jiaotong University Xi'an 710049 PR China
ITD Tech S R O Osvoboditelu 1005 735 81 Bohumín Czech Republic
See more in PubMed
Saiki RK, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–1354. doi: 10.1126/science.2999980. PubMed DOI
Zhu H, et al. PCR past, present and future. Biotechniques. 2020;69:317–325. doi: 10.2144/btn-2020-0057. PubMed DOI PMC
Vogelstein B, Kinzler KW. Digital PCR. Proc. Natl. Acad. Sci. 1999;96:9236. doi: 10.1073/pnas.96.16.9236. PubMed DOI PMC
Ahrberg CD, et al. Plasmonic heating-based portable digital PCR system. Lab Chip. 2020;20:3560–3568. doi: 10.1039/D0LC00788A. PubMed DOI
Hindson CM, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods. 2013;10:1003–1005. doi: 10.1038/nmeth.2633. PubMed DOI PMC
Gaňová, M., Zhang, H., Zhu, H., Korabečná, M. & Neužil, P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens. Bioelectron. 181, 113155 (2021). PubMed
Conte D, et al. Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR. BMC Genom. 2015;16:849. doi: 10.1186/s12864-015-2097-9. PubMed DOI PMC
Miotto E, et al. Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen- and TaqMan-based chemistries. Cancer Epidemiol. Biomark. Prev. 2014;23:2638. doi: 10.1158/1055-9965.EPI-14-0503. PubMed DOI
Shen F, Du W, Kreutz JE, Fok A, Ismagilov RF. Digital PCR on a SlipChip. Lab Chip. 2010;10:2666–2672. doi: 10.1039/c004521g. PubMed DOI PMC
Heyries KA, et al. Megapixel digital PCR. Nat. Methods. 2011;8:649–651. doi: 10.1038/nmeth.1640. PubMed DOI
Yu Z, et al. Self-partitioning SlipChip for slip-induced droplet formation and human papillomavirus viral load quantification with digital LAMP. Biosens. Bioelectron. 2020;155:112107. doi: 10.1016/j.bios.2020.112107. PubMed DOI
Kanchi S, Sabela MI, Mdluli PS, Bisetty K. Smartphone based bioanalytical and diagnosis applications: a review. Biosens. Bioelectron. 2018;102:136–149. doi: 10.1016/j.bios.2017.11.021. PubMed DOI
Gou T, et al. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy. Biosens. Bioelectron. 2018;120:144–152. doi: 10.1016/j.bios.2018.08.030. PubMed DOI
Liu X, et al. Smartphone integrated handheld (SPEED) digital polymerase chain reaction device. Biosens. Bioelectron. 2023;232:115319. doi: 10.1016/j.bios.2023.115319. PubMed DOI
Consul PC, Jain GC. A generalization of the Poisson distribution. Technometrics. 1973;15:791–799. doi: 10.1080/00401706.1973.10489112. DOI
Basu AS. Digital assays part I: partitioning statistics and digital PCR. SLAS TECHNOLOGY: Translat. Life Sci. Innov. 2017;22:369–386. doi: 10.1177/2472630317705680. PubMed DOI
Dong L, et al. Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci. Rep. 2015;5:13174. doi: 10.1038/srep13174. PubMed DOI PMC
Balram KC, et al. The nanolithography toolbox. J. Res. Natl. Inst. 2016;121:464–476. doi: 10.6028/jres.121.024. PubMed DOI PMC
Li H, et al. Versatile digital polymerase chain reaction chip design, fabrication, and image processing. Sens. Actuators B Chem. 2019;283:677–684. doi: 10.1016/j.snb.2018.12.072. DOI
Yan Z, et al. An image-to-answer algorithm for fully automated digital PCR image processing. Lab Chip. 2022;22:1333–1343. doi: 10.1039/D1LC01175H. PubMed DOI
Firouzi F, et al. Internet-of-Things and big data for smarter healthcare: from device to architecture, applications and analytics. Future Gener. Comput. Syst. 2018;78:583–586. doi: 10.1016/j.future.2017.09.016. DOI
Paulovich FV, De Oliveira MCF, Oliveira ON., Jr A future with ubiquitous sensing and intelligent systems. ACS Sens. 2018;3:1433–1438. doi: 10.1021/acssensors.8b00276. PubMed DOI
Kulkarni MB, Goyal S, Dhar A, Sriram D, Goel S. Miniaturized and IoT enabled continuous-flow-based microfluidic PCR device for DNA amplification. IEEE Trans. Nanobiosci. 2021;21:97–104. doi: 10.1109/TNB.2021.3092292. PubMed DOI
Zhu H, et al. IoT PCR for pandemic disease detection and its spread monitoring. Sens. Actuators B Chem. 2020;303:127098. doi: 10.1016/j.snb.2019.127098. PubMed DOI PMC
Ardalan S, Hosseinifard M, Vosough M, Golmohammadi H. Towards smart personalized perspiration analysis: an IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens. Bioelectron. 2020;168:112450. doi: 10.1016/j.bios.2020.112450. PubMed DOI
Neuzil, P., Sun, W., Karasek, T. & Manz, A. Nanoliter-sized overheated reactor. Appl. Phys. Lett. 106, 024104 (2015).
Svatoš V, Gablech I, Pekárek J, Klempa J, Neužil P. Precise determination of thermal parameters of a microbolometer. Infrared Phys. Technol. 2018;93:286–290. doi: 10.1016/j.infrared.2018.07.037. DOI
Neuzil P, Cheng F, Soon JBW, Qian LL, Reboud J. Non-contact fluorescent bleaching-independent method for temperature measurement in microfluidic systems based on DNA melting curves. Lab Chip. 2010;10:2818–2821. doi: 10.1039/c005243d. PubMed DOI
Ni S, Bu Y, Zhu H, Neuzil P, Yobas L. A Sub-nL Chip Calorimeter and Its Application to the Measurement of the photothermal transduction efficiency of plasmonic nanoparticles. J. Microelectromech. Syst. 2021;30:759–769. doi: 10.1109/JMEMS.2021.3096524. DOI
Zhu, H. et al. Heat transfer time determination based on DNA melting curve analysis. Microfluid. Nanofluidics24, 1–8 (2020).
Gaňová M, et al. Temperature non-uniformity detection on dPCR chips and temperature sensor calibration. RSC Adv. 2022;12:2375–2382. doi: 10.1039/D1RA08138A. PubMed DOI PMC
Zhang H, et al. Digital PCR system development accelerator—A methodology to emulate dPCR results. Sens. Actuators B Chem. 2022;358:131527. doi: 10.1016/j.snb.2022.131527. DOI
Laššáková S, et al. Rapid non-invasive prenatal screening test for trisomy 21 based on digital droplet PCR. Sci. Rep. 2023;13:22948. doi: 10.1038/s41598-023-50330-x. PubMed DOI PMC