Galectin-3-Binding Protein Inhibits Extracellular Heparan 6-O-Endosulfatase Sulf-2
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38825040
PubMed Central
PMC11259796
DOI
10.1016/j.mcpro.2024.100793
PII: S1535-9476(24)00083-5
Knihovny.cz E-zdroje
- Klíčová slova
- HNSCC, LC-MS/MS, Sulf-2, affinity purification, enzyme, mass spectrometry, protein-protein interaction, spheroid, sulfatase,
- MeSH
- antigeny nádorové MeSH
- chondroitinsulfáty metabolismus MeSH
- dlaždicobuněčné karcinomy hlavy a krku metabolismus patologie MeSH
- heparansulfát proteoglykany metabolismus MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- nádory hlavy a krku metabolismus patologie MeSH
- pohyb buněk účinky léků MeSH
- spinocelulární karcinom metabolismus patologie MeSH
- sulfatasy metabolismus MeSH
- sulfotransferasy * metabolismus MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny nádorové MeSH
- chondroitinsulfáty MeSH
- heparansulfát proteoglykany MeSH
- LGALS3BP protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- SULF2 protein, human MeSH Prohlížeč
- sulfatasy MeSH
- sulfotransferasy * MeSH
Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented, and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). Despite its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the conditioned media of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed the importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration-dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited the invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP may regulate the physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.
Zobrazit více v PubMed
Dhoot G.K., Gustafsson M.K., Ai X., Sun W., Standiford D.M., Emerson C.P. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 2001;293:1663–1666. PubMed
Morimoto-Tomita M., Uchimura K., Werb Z., Hemmerich S., Rosen S.D. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem. 2002;277:49175–49185. PubMed PMC
Seffouh A., El Masri R., Makshakova O., Gout E., Hassoun Z.E.O., Andrieu J.-P., et al. Expression and purification of recombinant extracellular sulfatase HSulf-2 allows deciphering of enzyme sub-domain coordinated role for the binding and 6-O-desulfation of heparan sulfate. Cell. Mol. Life Sci. 2019;76:1807–1819. PubMed PMC
Feyzi E., Lustig F., Fager G., Spillmann D., Lindahl U., Salmivirta M. Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J. Biol. Chem. 1997;272:5518–5524. PubMed
Lyon M., Deakin J.A., Mizuno K., Nakamura T., Gallagher J.T. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J. Biol. Chem. 1994;269:11216–11223. PubMed
Mahalingam Y., Gallagher J.T., Couchman J.R. Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties. J. Biol. Chem. 2007;282:3221–3230. PubMed
Ono K., Hattori H., Takeshita S., Kurita A., Ishihara M. Structural features in heparin that interact with VEGF165 and modulate its biological activity. Glycobiology. 1999;9:705–711. PubMed
Pye D.A., Vivès R.R., Hyde P., Gallagher J.T. Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. Glycobiology. 2000;10:1183–1192. PubMed
Uchimura K., Morimoto-Tomita M., Bistrup A., Li J., Lyon M., Gallagher J., et al. HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem. 2006;7:2. PubMed PMC
Zhang S., Condac E., Qiu H., Jiang J., Gutierrez-Sanchez G., Bergmann C., et al. Heparin-induced leukocytosis requires 6-O-sulfation and is caused by blockade of selectin- and CXCL12 protein-mediated leukocyte trafficking in mice. J. Biol. Chem. 2012;287:5542–5553. PubMed PMC
Bret C., Moreaux J., Schved J.-F., Hose D., Klein B. SULFs in human neoplasia: implication as progression and prognosis factors. J. Transl. Med. 2011;9:72. PubMed PMC
Flowers S.A., Zhou X., Wu J., Wang Y., Makambi K., Kallakury B.V., et al. Expression of the extracellular sulfatase SULF2 is associated with squamous cell carcinoma of the head and neck. Oncotarget. 2016;7:43177–43187. PubMed PMC
Hur K., Han T.-S., Jung E.-J., Yu J., Lee H.-J., Kim W.H., et al. Up-regulated expression of sulfatases (SULF1 and SULF2) as prognostic and metastasis predictive markers in human gastric cancer. J. Pathol. 2012;228:88–98. PubMed
Lai J.-P., Sandhu D.S., Yu C., Han T., Moser C.D., Jackson K.K., et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology. 2008;47:1211–1222. PubMed PMC
Phillips J.J., Huillard E., Robinson A.E., Ward A., Lum D.H., Polley M.-Y., et al. Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. J. Clin. Invest. 2012;122:911–922. PubMed PMC
Yang Y., Ahn J., Edwards N.J., Benicky J., Rozeboom A.M., Davidson B., et al. Extracellular heparan 6-O-endosulfatases SULF1 and SULF2 in head and neck squamous cell carcinoma and other Malignancies. Cancers (Basel) 2022;14:5553. PubMed PMC
Yang Y., Ahn J., Raghunathan R., Kallakury B.V., Davidson B., Kennedy Z.B., et al. Expression of the extracellular sulfatase SULF2 affects survival of head and neck squamous cell carcinoma patients. Front. Oncol. 2021;10 PubMed PMC
Zhu C., He L., Zhou X., Nie X., Gu Y. Sulfatase 2 promotes breast cancer progression through regulating some tumor-related factors. Oncol. Rep. 2016;35:1318–1328. PubMed PMC
Rosen S.D., Lemjabbar-Alaoui H. Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin. Ther. Targets. 2010;14:935–949. PubMed PMC
Vivès R.R., Seffouh A., Lortat-Jacob H. Post-synthetic regulation of HS structure: the Yin and Yang of the sulfs in cancer. Front. Oncol. 2014;3:331. PubMed PMC
Benicky J., Sanda M., Panigrahi A., Liu J., Wang Z., Pagadala V., et al. A 6-O-endosulfatase activity assay based on synthetic heparan sulfate oligomers. Glycobiology. 2023;33:384–395. PubMed PMC
Dierks T., Schmidt B., Borissenko L.V., Peng J., Preusser A., Mariappan M., et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell. 2003;113:435–444. PubMed
Appel M.J., Bertozzi C.R. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem. Biol. 2015;10:72–84. PubMed PMC
Hanson S.R., Best M.D., Wong C.-H. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed Engl. 2004;43:5736–5763. PubMed
Tang R., Rosen S.D. Functional consequences of the subdomain organization of the sulfs. J. Biol. Chem. 2009;284:21505–21514. PubMed PMC
El Masri R., Seffouh A., Roelants C., Seffouh I., Gout E., Pérard J., et al. Extracellular endosulfatase Sulf-2 harbors a chondroitin/dermatan sulfate chain that modulates its enzyme activity. Cell Rep. 2022;38 PubMed
Mukherjee P., Zhou X., Benicky J., Panigrahi A., Aljuhani R., Liu J., et al. Heparan-6-O-Endosulfatase 2 promotes Invasiveness of head and neck squamous carcinoma cell lines in Co-cultures with cancer-associated fibroblasts. Cancers (Basel) 2023;15:5168. PubMed PMC
Elegheert J., Behiels E., Bishop B., Scott S., Woolley R.E., Griffiths S.C., et al. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 2018;13:2991–3017. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC
Moriconi C., Palmieri V., Di Santo R., Tornillo G., Papi M., Pilkington G., et al. INSIDIA: a Fiji Macro Delivering high-Throughput and high-content spheroid invasion analysis. Biotechnol. J. 2017;12 doi: 10.1002/biot.201700140. PubMed DOI
Perini G., Rosa E., Friggeri G., Di Pietro L., Barba M., Parolini O., et al. INSIDIA 2.0 high-Throughput analysis of 3D cancer models: Multiparametric quantification of Graphene Quantum Dots Photothermal therapy for glioblastoma and Pancreatic cancer. Int. J. Mol. Sci. 2022;23:3217. PubMed PMC
Singer M.S., Phillips J.J., Lemjabbar-Alaoui H., Wang Y.Q., Wu J., Goldman R., et al. SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis. Clin. Chim. Acta. 2015;0:72–78. PubMed PMC
Lee H.-Y., Yeh B.-W., Chan T.-C., Yang K.-F., Li W.-M., Huang C.-N., et al. Sulfatase-1 overexpression indicates poor prognosis in urothelial carcinoma of the urinary bladder and upper tract. Oncotarget. 2017;8:47216–47229. PubMed PMC
Capone E., Iacobelli S., Sala G. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J. Transl. Med. 2021;19:405. PubMed PMC
Dufrusine B., Capone E., Ponziani S., Lattanzio R., Lanuti P., Giansanti F., et al. Extracellular LGALS3BP: a potential disease marker and actionable target for antibody-drug conjugate therapy in glioblastoma. Mol. Oncol. 2023;17:1460–1473. PubMed PMC
Iurisci I., Tinari N., Natoli C., Angelucci D., Cianchetti E., Iacobelli S. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin. Cancer Res. 2000;6:1389–1393. PubMed
Nielsen C.T., Østergaard O., Rasmussen N.S., Jacobsen S., Heegaard N.H.H. A review of studies of the proteomes of circulating microparticles: key roles for galectin-3-binding protein-expressing microparticles in vascular diseases and systemic lupus erythematosus. Clin. Proteomics. 2017;14:11. PubMed PMC