• This record comes from PubMed

Galectin-3-Binding Protein Inhibits Extracellular Heparan 6-O-Endosulfatase Sulf-2

. 2024 Jul ; 23 (7) : 100793. [epub] 20240601

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 38825040
PubMed Central PMC11259796
DOI 10.1016/j.mcpro.2024.100793
PII: S1535-9476(24)00083-5
Knihovny.cz E-resources

Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented, and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). Despite its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the conditioned media of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed the importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration-dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited the invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP may regulate the physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.

Update Of

PubMed

See more in PubMed

Dhoot G.K., Gustafsson M.K., Ai X., Sun W., Standiford D.M., Emerson C.P. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 2001;293:1663–1666. PubMed

Morimoto-Tomita M., Uchimura K., Werb Z., Hemmerich S., Rosen S.D. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem. 2002;277:49175–49185. PubMed PMC

Seffouh A., El Masri R., Makshakova O., Gout E., Hassoun Z.E.O., Andrieu J.-P., et al. Expression and purification of recombinant extracellular sulfatase HSulf-2 allows deciphering of enzyme sub-domain coordinated role for the binding and 6-O-desulfation of heparan sulfate. Cell. Mol. Life Sci. 2019;76:1807–1819. PubMed PMC

Feyzi E., Lustig F., Fager G., Spillmann D., Lindahl U., Salmivirta M. Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J. Biol. Chem. 1997;272:5518–5524. PubMed

Lyon M., Deakin J.A., Mizuno K., Nakamura T., Gallagher J.T. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J. Biol. Chem. 1994;269:11216–11223. PubMed

Mahalingam Y., Gallagher J.T., Couchman J.R. Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties. J. Biol. Chem. 2007;282:3221–3230. PubMed

Ono K., Hattori H., Takeshita S., Kurita A., Ishihara M. Structural features in heparin that interact with VEGF165 and modulate its biological activity. Glycobiology. 1999;9:705–711. PubMed

Pye D.A., Vivès R.R., Hyde P., Gallagher J.T. Regulation of FGF-1 mitogenic activity by heparan sulfate oligosaccharides is dependent on specific structural features: differential requirements for the modulation of FGF-1 and FGF-2. Glycobiology. 2000;10:1183–1192. PubMed

Uchimura K., Morimoto-Tomita M., Bistrup A., Li J., Lyon M., Gallagher J., et al. HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem. 2006;7:2. PubMed PMC

Zhang S., Condac E., Qiu H., Jiang J., Gutierrez-Sanchez G., Bergmann C., et al. Heparin-induced leukocytosis requires 6-O-sulfation and is caused by blockade of selectin- and CXCL12 protein-mediated leukocyte trafficking in mice. J. Biol. Chem. 2012;287:5542–5553. PubMed PMC

Bret C., Moreaux J., Schved J.-F., Hose D., Klein B. SULFs in human neoplasia: implication as progression and prognosis factors. J. Transl. Med. 2011;9:72. PubMed PMC

Flowers S.A., Zhou X., Wu J., Wang Y., Makambi K., Kallakury B.V., et al. Expression of the extracellular sulfatase SULF2 is associated with squamous cell carcinoma of the head and neck. Oncotarget. 2016;7:43177–43187. PubMed PMC

Hur K., Han T.-S., Jung E.-J., Yu J., Lee H.-J., Kim W.H., et al. Up-regulated expression of sulfatases (SULF1 and SULF2) as prognostic and metastasis predictive markers in human gastric cancer. J. Pathol. 2012;228:88–98. PubMed

Lai J.-P., Sandhu D.S., Yu C., Han T., Moser C.D., Jackson K.K., et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology. 2008;47:1211–1222. PubMed PMC

Phillips J.J., Huillard E., Robinson A.E., Ward A., Lum D.H., Polley M.-Y., et al. Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. J. Clin. Invest. 2012;122:911–922. PubMed PMC

Yang Y., Ahn J., Edwards N.J., Benicky J., Rozeboom A.M., Davidson B., et al. Extracellular heparan 6-O-endosulfatases SULF1 and SULF2 in head and neck squamous cell carcinoma and other Malignancies. Cancers (Basel) 2022;14:5553. PubMed PMC

Yang Y., Ahn J., Raghunathan R., Kallakury B.V., Davidson B., Kennedy Z.B., et al. Expression of the extracellular sulfatase SULF2 affects survival of head and neck squamous cell carcinoma patients. Front. Oncol. 2021;10 PubMed PMC

Zhu C., He L., Zhou X., Nie X., Gu Y. Sulfatase 2 promotes breast cancer progression through regulating some tumor-related factors. Oncol. Rep. 2016;35:1318–1328. PubMed PMC

Rosen S.D., Lemjabbar-Alaoui H. Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin. Ther. Targets. 2010;14:935–949. PubMed PMC

Vivès R.R., Seffouh A., Lortat-Jacob H. Post-synthetic regulation of HS structure: the Yin and Yang of the sulfs in cancer. Front. Oncol. 2014;3:331. PubMed PMC

Benicky J., Sanda M., Panigrahi A., Liu J., Wang Z., Pagadala V., et al. A 6-O-endosulfatase activity assay based on synthetic heparan sulfate oligomers. Glycobiology. 2023;33:384–395. PubMed PMC

Dierks T., Schmidt B., Borissenko L.V., Peng J., Preusser A., Mariappan M., et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell. 2003;113:435–444. PubMed

Appel M.J., Bertozzi C.R. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem. Biol. 2015;10:72–84. PubMed PMC

Hanson S.R., Best M.D., Wong C.-H. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew. Chem. Int. Ed Engl. 2004;43:5736–5763. PubMed

Tang R., Rosen S.D. Functional consequences of the subdomain organization of the sulfs. J. Biol. Chem. 2009;284:21505–21514. PubMed PMC

El Masri R., Seffouh A., Roelants C., Seffouh I., Gout E., Pérard J., et al. Extracellular endosulfatase Sulf-2 harbors a chondroitin/dermatan sulfate chain that modulates its enzyme activity. Cell Rep. 2022;38 PubMed

Mukherjee P., Zhou X., Benicky J., Panigrahi A., Aljuhani R., Liu J., et al. Heparan-6-O-Endosulfatase 2 promotes Invasiveness of head and neck squamous carcinoma cell lines in Co-cultures with cancer-associated fibroblasts. Cancers (Basel) 2023;15:5168. PubMed PMC

Elegheert J., Behiels E., Bishop B., Scott S., Woolley R.E., Griffiths S.C., et al. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 2018;13:2991–3017. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. PubMed PMC

Moriconi C., Palmieri V., Di Santo R., Tornillo G., Papi M., Pilkington G., et al. INSIDIA: a Fiji Macro Delivering high-Throughput and high-content spheroid invasion analysis. Biotechnol. J. 2017;12 doi: 10.1002/biot.201700140. PubMed DOI

Perini G., Rosa E., Friggeri G., Di Pietro L., Barba M., Parolini O., et al. INSIDIA 2.0 high-Throughput analysis of 3D cancer models: Multiparametric quantification of Graphene Quantum Dots Photothermal therapy for glioblastoma and Pancreatic cancer. Int. J. Mol. Sci. 2022;23:3217. PubMed PMC

Singer M.S., Phillips J.J., Lemjabbar-Alaoui H., Wang Y.Q., Wu J., Goldman R., et al. SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis. Clin. Chim. Acta. 2015;0:72–78. PubMed PMC

Lee H.-Y., Yeh B.-W., Chan T.-C., Yang K.-F., Li W.-M., Huang C.-N., et al. Sulfatase-1 overexpression indicates poor prognosis in urothelial carcinoma of the urinary bladder and upper tract. Oncotarget. 2017;8:47216–47229. PubMed PMC

Capone E., Iacobelli S., Sala G. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J. Transl. Med. 2021;19:405. PubMed PMC

Dufrusine B., Capone E., Ponziani S., Lattanzio R., Lanuti P., Giansanti F., et al. Extracellular LGALS3BP: a potential disease marker and actionable target for antibody-drug conjugate therapy in glioblastoma. Mol. Oncol. 2023;17:1460–1473. PubMed PMC

Iurisci I., Tinari N., Natoli C., Angelucci D., Cianchetti E., Iacobelli S. Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin. Cancer Res. 2000;6:1389–1393. PubMed

Nielsen C.T., Østergaard O., Rasmussen N.S., Jacobsen S., Heegaard N.H.H. A review of studies of the proteomes of circulating microparticles: key roles for galectin-3-binding protein-expressing microparticles in vascular diseases and systemic lupus erythematosus. Clin. Proteomics. 2017;14:11. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...