Click estradiol dimers with novel aromatic bridging units: synthesis and anticancer evaluation
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38904149
PubMed Central
PMC467089
DOI
10.1080/14756366.2024.2367139
Knihovny.cz E-zdroje
- Klíčová slova
- Estradiol, cancer cell, dimer, in silico, tubulin,
- MeSH
- click chemie MeSH
- dimerizace MeSH
- estradiol * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- proliferace buněk * účinky léků MeSH
- protinádorové látky * farmakologie chemická syntéza chemie MeSH
- screeningové testy protinádorových léčiv * MeSH
- vztah mezi dávkou a účinkem léčiva * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- estradiol * MeSH
- protinádorové látky * MeSH
Estradiol dimers (EDs) possess significant anticancer activity by targeting tubulin dynamics. In this study, we synthesised 12 EDs variants via copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction, focusing on structural modifications within the aromatic bridge connecting two estradiol moieties. In vitro testing of these EDs revealed a marked improvement in selectivity towards cancerous cells, particularly for ED1-8. The most active compounds, ED3 (IC50 = 0.38 μM in CCRF-CEM) and ED5 (IC50 = 0.71 μM in CCRF-CEM) demonstrated cytotoxic effects superior to 2-methoxyestradiol (IC50 = 1.61 μM in CCRF-CEM) and exhibited anti-angiogenic properties in an endothelial cell tube-formation model. Cell-based experiments and in vitro assays revealed that EDs interfere with mitotic spindle assembly. Additionally, we proposed an in silico model illustrating the probable binding modes of ED3 and ED5, suggesting that dimers with a simple linker and a single substituent on the aromatic central ring possess enhanced characteristics compared to more complex dimers.
Zobrazit více v PubMed
Brouhard GJ, Rice LM.. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol. 2018;19(7):1–16. PubMed PMC
Lafanechère L. The microtubule cytoskeleton: an old validated target for novel therapeutic drugs. Front Pharmacol. 2022;13:969183. PubMed PMC
Serrano-del Valle A, Reina-Ortiz C, Benedi A, Anel A, Naval J, Marzo I.. Future prospects for mitosis-targeted antitumor therapies. Biochem Pharmacol. 2021;190:114655. PubMed
Čermák V, Dostál V, Jelínek M, Libusová L, Kovář J, Rösel D, Brábek J.. Microtubule-targeting agents and their impact on cancer treatment. Eur J Cell Biol. 2020;99(4):151075. PubMed
Wordeman L, Vicente JJ.. Microtubule targeting agents in disease: classic drugs, novel roles. Cancers. 2021;13(22):5650. PubMed PMC
Verenich S, Gerk PM.. Therapeutic promises of 2-methoxyestradiol and its drug disposition challenges. Mol Pharm. 2010;7(6):2030–2039. PubMed PMC
Pertegal M, Fenoy FJ, Bonacasa B, Mendiola J, Delgado JL, Hernández M, Salom MG, Bosch V, Hernández I.. 2-Methoxyestradiol plasma levels are associated with clinical severity indices and biomarkers of preeclampsia. Reprod Sci. 2015;22(2):198–206. PubMed PMC
Nahar L, Sarker SD.. A review on steroid dimers: 2011–2019. Steroids. 2020;164:108736. PubMed
Jurášek M, Černohorská M, Řehulka J, Spiwok V, Sulimenko T, Dráberová E, Darmostuk M, Gurská S, Frydrych I, Buriánová R, et al. . Estradiol dimer inhibits tubulin polymerization and microtubule dynamics. J Steroid Biochem Mol Biol. 2018;183:68–79. PubMed
Jurášek M, Řehulka J, Hrubá L, Ivanová A, Gurská S, Mokshyna O, Trousil P, Huml L, Polishchuk P, Hajdúch M, et al. . Triazole-based estradiol dimers prepared via CuAAC from 17α-ethinyl estradiol with five-atom linkers causing G2/M arrest and tubulin inhibition. Bioorg Chem. 2023;131:106334. PubMed
Bouysset C, Fiorucci S.. Prolif: a library to encode molecular interactions as fingerprints. J Cheminform. 2021;13(1):72. PubMed PMC
Thomas JR, Liu XJ, Hergenrother PJ.. Size-specific ligands for RNA hairpin loops. J Am Chem Soc. 2005;127(36):12434–12435. PubMed
Rasheed OK, Lawrence A, Quayle P, Bailey PD.. A modular approach to functionalised dyes. Synlett. 2015;27(6):905–911.
Shtyrlin NV, , Vafina RM, , Pugachev MV, , Khaziev RM, , Nikitina EV, , Zeldi MI, , Iksanova AG, , Shtyrlin YG. Synthesis and biological activity of quaternary phosphonium salts based on 3-hydroxypyridine and 4-deoxypyridoxine. Russ Chem Bull. 2016;65(2):537–545.
Sali A, Blundell T.. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol. 1993;234:64–86. PubMed
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE.. UCSF chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. PubMed
Trott O, Olson AJ.. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. PubMed PMC
Landrum G. RDkit: open-source cheminformatics software; 2021. Available from: https://www.rdkit.org
Cxcalc utility was used for ligand protonation, Cxcalc version 19.22.0. ChemAxon. Available from: https://www.chemaxon.com
Hess B, Kutzner C, van der Spoel D, Lindahl E.. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–447. PubMed
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE.. Improved side-chain torsion potentials for the amber ff99sb protein force field. Proteins. 2010;78(8):1950–1958. PubMed PMC
Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Berryman JT, Brozell SR, Cerutti DS, Cheatham TE, III, Cisneros GA, Cruzeiro VWD, et al. . Amber 2023. San Francisco: University of California; 2023.
StreaMD: the toolkit for high-throughput molecular dynamics simulations