Individual Prognostication of Disease Activity and Disability Worsening in Multiple Sclerosis With Retinal Layer Thickness z Scores
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38941572
PubMed Central
PMC11214150
DOI
10.1212/nxi.0000000000200269
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- optická koherentní tomografie * MeSH
- prognóza MeSH
- progrese nemoci * MeSH
- retina diagnostické zobrazování patologie patofyziologie MeSH
- roztroušená skleróza * patofyziologie diagnostické zobrazování MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVES: Retinal optical coherence tomography (OCT) provides promising prognostic imaging biomarkers for future disease activity in multiple sclerosis (MS). However, raw OCT-derived measures have multiple dependencies, supporting the need for establishing reference values adjusted for possible confounders. The purpose of this study was to investigate the capacity for age-adjusted z scores of OCT-derived measures to prognosticate future disease activity and disability worsening in people with MS (PwMS). METHODS: We established age-adjusted OCT reference data using generalized additive models for location, scale, and shape for peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform layer (GCIP) thicknesses, involving 910 and 423 healthy eyes, respectively. Next, we transformed the retinal layer thickness of PwMS from 3 published studies into age-adjusted z scores (pRNFL-z and GCIP-z) based on the reference data. Finally, we investigated the association of pRNFL-z or GCIP-z as predictors with future confirmed disability worsening (Expanded Disability Status Scale score increase) or disease activity (failing of the no evidence of disease activity [NEDA-3] criteria) as outcomes. Cox proportional hazards models or logistic regression analyses were applied according to the original studies. Optimal cutoffs were identified using the Akaike information criterion as well as location with the log-rank and likelihood-ratio tests. RESULTS: In the first cohort (n = 863), 172 PwMS (24%) had disability worsening over a median observational period of 2.0 (interquartile range [IQR]:1.0-3.0) years. Low pRNFL-z (≤-2.04) were associated with an increased risk of disability worsening (adjusted hazard ratio (aHR) [95% CI] = 2.08 [1.47-2.95], p = 3.82e-5). In the second cohort (n = 170), logistic regression analyses revealed that lower pRNFL-z showed a higher likelihood for disability accumulation at the two-year follow-up (reciprocal odds ratio [95% CI] = 1.51[1.06-2.15], p = 0.03). In the third cohort (n = 78), 46 PwMS (59%) did not maintain the NEDA-3 status over a median follow-up of 2.0 (IQR: 1.9-2.1) years. PwMS with low GCIP-z (≤-1.03) had a higher risk of showing disease activity (aHR [95% CI] = 2.14 [1.03-4.43], p = 0.04). Compared with raw values with arbitrary cutoffs, applying the z score approach with optimal cutoffs showed better performance in discrimination and calibration (higher Harrell's concordance index and lower integrated Brier score). DISCUSSION: In conclusion, our work demonstrated reference cohort-based z scores that account for age, a major driver for disease progression in MS, to be a promising approach for creating OCT-derived measures useable across devices and toward individualized prognostication.
Zobrazit více v PubMed
Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378(2):169-180. doi:10.1056/NEJMra1401483 PubMed DOI PMC
Pitt D, Lo CH, Gauthier SA, et al. . Toward precision phenotyping of multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022;9(6):e200025. doi:10.1212/NXI.0000000000200025 PubMed DOI PMC
Leocani L, Rocca M, Comi G. MRI and neurophysiological measures to predict course, disability and treatment response in multiple sclerosis. Curr Opin Neurol. 2016;29(3):243-253. doi:10.1097/WCO.0000000000000333 PubMed DOI
Kappos L, Wolinsky JS, Giovannoni G, et al. . Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol. 2020;77(9):1132-1140. doi:10.1001/jamaneurol.2020.1568 PubMed DOI PMC
Lublin FD, Häring DA, Ganjgahi H, et al. . How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147-3161. doi:10.1093/brain/awac016 PubMed DOI PMC
Kuchling J, Paul F. Visualizing the central nervous system: imaging tools for multiple sclerosis and neuromyelitis optica spectrum disorders. Front Neurol. 2020;11:450. doi:10.3389/fneur.2020.00450 PubMed DOI PMC
Graves JS, Oertel FC, Van der Walt A, et al. . Leveraging visual outcome measures to advance therapy development in neuroimmunologic disorders. Neurol Neuroimmunol Neuroinflamm. 2022;9(2):e1126. doi:10.1212/NXI.0000000000001126 PubMed DOI PMC
Balcer LJ, Miller DH, Reingold SC, Cohen JA. Vision and vision-related outcome measures in multiple sclerosis. Brain. 2015;138(Pt 1):11-27. doi:10.1093/brain/awu335 PubMed DOI PMC
Oberwahrenbrock T, Weinhold M, Mikolajczak J, et al. . Reliability of intra-retinal layer thickness estimates. PLoS One. 2015;10(9):e0137316. doi:10.1371/journal.pone.0137316 PubMed DOI PMC
Petzold A, Wattjes MP, Costello F, et al. . The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol. 2014;10(8):447-458. doi:10.1038/nrneurol.2014.108 PubMed DOI
Petzold A, Balcer L, Calabresi PA, et al. . Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017;16(10):797-812. doi:10.1016/S1474-4422(17)30278-8 PubMed DOI
Oberwahrenbrock T, Traber GL, Lukas S, et al. . Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurol Neuroimmunol Neuroinflamm. 2018;5(3):e449. doi:10.1212/NXI.0000000000000449 PubMed DOI PMC
Britze J, Pihl-Jensen G, Frederiksen JL. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol. 2017;264(9):1837-1853. doi:10.1007/s00415-017-8531-y PubMed DOI
Martinez-Lapiscina EH, Arnow S, Wilson JA, et al. . Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 2016;15(6):574-584. doi:10.1016/S1474-4422(16)00068-5 PubMed DOI
Zimmermann HG, Knier B, Oberwahrenbrock T, et al. . Association of retinal ganglion cell layer thickness with future disease activity in patients with clinically isolated syndrome. JAMA Neurol. 2018;75(9):1071-1079. doi:10.1001/jamaneurol.2018.1011 PubMed DOI PMC
Lin T-Y, Vitkova V, Asseyer S, et al. . Increased serum neurofilament light and thin ganglion cell-inner plexiform layer are additive risk factors for disease activity in early multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2021;8(5):e1051. doi:10.1212/NXI.0000000000001051 PubMed DOI PMC
Cilingir V, Batur M. First measured retinal nerve fiber layer thickness in RRMS can be used as a biomarker for the course of the disease: threshold value discussions. J Neurol. 2021;268(8):2858-2865. doi:10.1007/s00415-021-10469-x PubMed DOI
Wauschkuhn J, Solorza Buenrostro G, Aly L, et al. . Retinal ganglion cell loss is associated with future disability worsening in early relapsing–remitting multiple sclerosis. Eur J Neurol. 2023;30(4):982-990. doi:10.1111/ene.15681 PubMed DOI
Lambe J, Fitzgerald KC, Murphy OC, et al. . Association of spectral-domain OCT with long-term disability worsening in multiple sclerosis. Neurology. 2021;96(16):e2058-e2069. doi:10.1212/WNL.0000000000011788 PubMed DOI PMC
Gafson A, Craner MJ, Matthews PM. Personalised medicine for multiple sclerosis care. Mult Scler. 2017;23(3):362-369. doi:10.1177/1352458516672017 PubMed DOI
Benkert P, Meier S, Schaedelin S, et al. . Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 2022;21(3):246-257. doi:10.1016/S1474-4422(22)00009-6 PubMed DOI
Koh VT, Tham YC, Cheung CY, et al. . Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography. Investig Ophthalmol Vis Sci. 2012;53(9):5853-5859. doi:10.1167/iovs.12-10414 PubMed DOI
Kenney R, Liu M, Hasanaj L, et al. . Normative data and conversion equation for spectral-domain optical coherence tomography in an international healthy control cohort. J Neuroophthalmol. 2022;42(4):442-453. doi:10.1097/WNO.0000000000001717 PubMed DOI PMC
Motamedi S, Gawlik K, Ayadi N, et al. . Normative data and minimally detectable change for inner retinal layer thicknesses using a semi-automated OCT image segmentation pipeline. Front Neurol. 2019;10:1117. doi:10.3389/fneur.2019.01117 PubMed DOI PMC
Warner CV, Syc SB, Stankiewicz AM, et al. . The impact of utilizing different optical coherence tomography devices for clinical purposes and in multiple sclerosis trials. PLoS One. 2011;6(8):e22947. doi:10.1371/journal.pone.0022947 PubMed DOI PMC
Pierro L, Gagliardi M, Iuliano L, Ambrosi A, Bandello F. Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments. Investig Ophthalmol Vis Sci. 2012;53(9):5912-5920. doi:10.1167/iovs.11-8644 PubMed DOI
Brune S, Høgestøl EA, de Rodez Benavent SA, et al. . Serum neurofilament light chain concentration predicts disease worsening in multiple sclerosis. Mult Scler. 2022;28(12):1859-1870. doi:10.1177/13524585221097296 PubMed DOI PMC
Polman CH, Reingold SC, Banwell B, et al. . Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302. doi:10.1002/ana.22366 PubMed DOI PMC
Lublin FD, Reingold SC, Cohen JA, et al. . Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278-286. doi:10.1212/WNL.0000000000000560 PubMed DOI PMC
Thompson AJ, Banwell BL, Barkhof F, et al. . Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-173. doi:10.1016/S1474-4422(17)30470-2 PubMed DOI
Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 2015;72(2):152-158. doi:10.1001/jamaneurol.2014.3537 PubMed DOI
Andorra M, Freire A, Zubizarreta I, et al. . Predicting disease severity in multiple sclerosis using multimodal data and machine learning. J Neurol. 2024;271(3):1133-1149. doi:10.1007/s00415-023-12132-z PubMed DOI PMC
Tewarie P, Balk L, Costello F, et al. . The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One. 2012;7(4):e34823. doi:10.1371/journal.pone.0034823 PubMed DOI PMC
Schippling S, Balk LJ, Costello F, et al. . Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler. 2015;21(2):163-170. doi:10.1177/1352458514538110 PubMed DOI
Aytulun A, Cruz-Herranz A, Aktas O, et al. . APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies. Neurology. 2021;97(2):68-79. doi:10.1212/WNL.0000000000012125 PubMed DOI PMC
Rigby RA, Stasinopoulos DM. Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution. Stat Med. 2004;23(19):3053-3076. doi:10.1002/sim.1861 PubMed DOI
Tintore M, Rovira À, Río J, et al. . Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138(Pt 7):1863-1874. doi:10.1093/brain/awv105 PubMed DOI
Eilers PHC, Marx BD. Flexible smoothing with B-splines and penalties. Stat Sci. 1996;11(2):89-121. doi:10.1214/ss/1038425655 DOI
Molinari N, Daurès JP, Durand JF. Regression splines for threshold selection in survival data analysis. Stat Med. 2001;20(2):237-247. doi:10.1002/1097-0258(20010130)20:2<237::aid-sim654>3.0.co;2-i PubMed DOI
Chang C, Hsieh MK, Chang WY, Chiang AJ, Chen J. Determining the optimal number and location of cutoff points with application to data of cervical cancer. PLoS One. 2017;12(4):e0176231. doi:10.1371/journal.pone.0176231 PubMed DOI PMC
Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med. 2011;30(10):1105-1117. doi:10.1002/sim.4154 PubMed DOI PMC
Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med. 1999;18(17-18):2529-2545. doi:10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5 PubMed DOI
Damasceno A, Damasceno BP, Cendes F. No evidence of disease activity in multiple sclerosis: Implications on cognition and brain atrophy. Mult Scler. 2016;22(1):64-72. doi:10.1177/1352458515604383 PubMed DOI
Pisa M, Guerrieri S, Di Maggio G, et al. . No evidence of disease activity is associated with reduced rate of axonal retinal atrophy in MS. Neurology. 2017;89(24):2469-2475. doi:10.1212/WNL.0000000000004736 PubMed DOI
Chitnis T, Prat A. A roadmap to precision medicine for multiple sclerosis. Mult Scler. 2020;26(5):522-532. doi:10.1177/1352458519881558 PubMed DOI
Siller N, Kuhle J, Muthuraman M, et al. . Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler. 2019;25(5):678-686. doi:10.1177/1352458518765666 PubMed DOI
Balk LJ, Cruz-Herranz A, Albrecht P, et al. . Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study. J Neurol. 2016;263(7):1323-1331. doi:10.1007/s00415-016-8127-y PubMed DOI PMC
Budenz DL, Anderson DR, Varma R, et al. . Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology. 2007;114(6):1046-1052. doi:10.1016/j.ophtha.2006.08.046 PubMed DOI PMC
Poon LYC, Antar H, Tsikata E, et al. . Effects of age, race, and ethnicity on the optic nerve and peripapillary region using spectral-domain OCT 3d volume scans. Transl Vis Sci Technol. 2018;7(6):12. doi:10.1167/tvst.7.6.12 PubMed DOI PMC
Talman LS, Bisker ER, Sackel DJ, et al. . Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol. 2010;67(6):749-760. doi:10.1002/ana.22005 PubMed DOI PMC
Iacobucci D, Posavac SS, Kardes FR, Schneider MJ, Popovich DL. Toward a more nuanced understanding of the statistical properties of a median split. J Consum Psychol. 2015;25(4):652-665. doi:10.1016/j.jcps.2014.12.002 DOI
Kimbrough DJ, Sotirchos ES, Wilson JA, et al. . Retinal damage and vision loss in African American multiple sclerosis patients. Ann Neurol. 2015;77(2):228-236. doi:10.1002/ana.24308 PubMed DOI PMC