Utilization of an optimized AlphaFold protein model for structure-based design of a selective HDAC11 inhibitor with anti-neuroblastoma activity
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
469954457
Deutsche Forschungsgemeinschaft (DFG)
471614207
Deutsche Forschungsgemeinschaft (DFG)
86652036
CAS
CEP - Centrální evidence projektů
24-12155 S
Grant Agency of the Czech Republic
PubMed
38996352
DOI
10.1002/ardp.202400486
Knihovny.cz E-zdroje
- Klíčová slova
- AlphaFold, HDAC11, model optimization, molecular dynamics simulation, neuroblastoma,
- MeSH
- histondeacetylasy * metabolismus MeSH
- inhibitory histondeacetylas * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- neuroblastom * farmakoterapie patologie MeSH
- protinádorové látky * farmakologie chemie chemická syntéza MeSH
- racionální návrh léčiv * MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- umělá inteligence MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- HDAC11 protein, human MeSH Prohlížeč
- histondeacetylasy * MeSH
- inhibitory histondeacetylas * MeSH
- protinádorové látky * MeSH
AlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17. Based on the predicted binding mode of FT895 in the optimized HDAC11 AlphaFold model, a new scaffold for HDAC11 inhibitors was designed, and the resulting compounds were tested in vitro against various HDAC isoforms. Compound 5a proved to be the most active compound with an IC50 of 365 nM and was able to selectively inhibit HDAC11. Furthermore, docking of 5a showed a binding mode comparable to FT895 but could not adopt any reasonable poses in other HDAC isoforms. We further supported the docking results with molecular dynamics simulations that confirmed the predicted binding mode. 5a also showed promising activity with an EC50 of 3.6 µM on neuroblastoma cells.
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
Institute of Molecular Medicine Martin Luther University Halle Wittenberg Halle Germany
Zobrazit více v PubMed
P. M. Lombardi, K. E. Cole, D. P. Dowling, D. W. Christianson, Curr. Opin. Struct. Biol. 2011, 21(6), 735.
M. Marek, T. B. Shaik, C. Romier Epigenetic Drug Discovery (Eds W. Sippl, M. Jung), Wiley‐VCH Verlag GmbH & Co. KGaA, Boschstr, 12, 69469 Weinheim, Germany 2019, pp. 11Chapter 2.
H. Chen, C. Xie, Q. Chen, S. Zhuang, Front. Endocrinol. 2022, 13, 989305.
S. S. Liu, F. Wu, Y. M. Jin, W. Q. Chang, T. M. Xu, Biomed. Pharmacother. 2020, 131, 110607.
H. E. Deubzer, M. C. Schier, I. Oehme, M. Lodrini, B. Haendler, A. Sommer, O. Witt, Int. J. Cancer 2013, 132(9), 2200.
D. Gong, Z. Zeng, F. Yi, J. Wu, Am. J. Transl. Res. 2019, 11(2), 983.
W. Huo, F. Qi, K. Wang, Oncol. Rep. 2020, 44(3), 1233.
W. Wang, L. Fu, S. Li, Z. Xu, X. Li, Cell Biol. Int. 2017, 41(12), 1290.
M. W. Martin, J. Y. Lee, D. R. Lancia, P. Y. Ng, B. Han, J. R. Thomason, M. S. Lynes, C. G. Marshall, C. Conti, A. Collis, M. A. Morales, K. Doshi, A. Rudnitskaya, L. Yao, X. Zheng, Bioorg. Med. Chem. Lett. 2018, 28(12), 2143.
N. Bora‐Singhal, D. Mohankumar, B. Saha, C. M. Colin, J. Y. Lee, M. W. Martin, X. Zheng, D. Coppola, S. Chellappan, Sci. Rep. 2020, 10(1), 4722.
P. Bai, Y. Liu, L. Yang, W. Ding, P. Mondal, N. Sang, G. Liu, X. Lu, T. T. Ho, Y. Zhou, R. Wu, V. C. Birar, M. Q. Wilks, R. E. Tanzi, H. Lin, C. Zhang, W. Li, S. Shen, C. Wang, J. Med. Chem. 2023, 66(23), 16075.
Z. Kutil, J. Mikešová, M. Zessin, M. Meleshin, Z. Nováková, G. Alquicer, A. Kozikowski, W. Sippl, C. Bařinka, M. Schutkowski, ACS Omega 2019, 4(22), 19895.
Z. Kutil, Z. Novakova, M. Meleshin, J. Mikesova, M. Schutkowski, C. Barinka, ACS Chem. Biol. 2018, 13(3), 685.
S. I. Son, J. Cao, C.‐L. Zhu, S. P. Miller, H. Lin, ACS Chem. Biol. 2019, 14(7), 1393.
T. T. Ho, C. Peng, E. Seto, H. Lin, ACS Chem. Biol. 2023, 18(4), 803.
F. Baselious, D. Robaa, W. Sippl, Comput. Biol. Med. 2023, 167, 107700.
L. Gao, M. A. Cueto, F. Asselbergs, P. Atadja, J. Biol. Chem. 2002, 277(28), 25748.
J. Jumper; R. Evans; A. Pritzel; T. Green; M. Figurnov; O. Ronneberger; K. Tunyasuvunakool; R. Bates; A. Žídek; A. Potapenko; A. Bridgland; C. Meyer; S. a. A. Kohl; A. J. Ballard; A. Cowie; B. Romera‐Paredes; S. Nikolov; R. Jain; J. Adler; T. Back; S. Petersen; D. Reiman; E. Clancy; M. Zielinski; M. Steinegger; M. Pacholska; T. Berghammer; S. Bodenstein; D. Silver; O. Vinyals; A. W. Senior; K. Kavukcuoglu; P. Kohli; D. Hassabis, Nature 2021, 596(7873), 583.
A. David, S. Islam, E. Tankhilevich, M. J. E. Sternberg, J. Mol. Biol. 2022, 434(2), 167336.
F. Ren; X. Ding; M. Zheng; M. Korzinkin; X. Cai; W. Zhu; A. Mantsyzov; A. Aliper; V. Aladinskiy; Z. Cao; S. Kong; X. Long; B. H. Man Liu; Y. Liu; V. Naumov; A. Shneyderman; I. V. Ozerov; J. Wang; F. W. Pun; D. A. Polykovskiy; C. Sun; M. Levitt; A. Aspuru‐Guzik; A. Zhavoronkov, Chem. Sci. 2023, 14(6), 1443.
W. Zhu; X. Liu; Q. Li; F. Gao; T. Liu; X. Chen; M. Zhang; A. Aliper; F. Ren; X. Ding; A. Zhavoronkov, Bioorg. Med. Chem. 2023, 91, 117414.
A. M. Díaz‐Rovira, H. Martín, T. Beuming, L. Díaz, V. Guallar, S. S. Ray, J. Chem. Inf. Model. 2023, 63(6), 1668.
X. He, C. You, H. Jiang, Y. Jiang, H. E. Xu, X. Cheng, Acta Pharmacol. Sin. 2023, 44(1), 1.
M. Holcomb, Y. T. Chang, D. S. Goodsell, S. Forli, Protein Sci. 2023, 32(1), e4530.
V. Scardino, J. I. Di Filippo, C. N. Cavasotto, iScience 2023, 26(1), 105920.
M. Karelina, J. J. Noh, R. O. Dror, eLife 2023, 12, RP89386.
F. Baselious, S. Hilscher, D. Robaa, C. Barinka, M. Schutkowski, W. Sippl, Int. J. Mol. Sci. 2024, 25(2), c1358.
N. S. M. Ismail, R. F. George, R. aT. Serya, F. N. Baselious, M. El‐Manawaty, E. M. Shalaby, A. S. Girgis, RSC Adv. 2016, 6(104), 101911.
T. M. Thole, M. Lodrini, J. Fabian, J. Wuenschel, S. Pfeil, T. Hielscher, A. Kopp‐Schneider, U. Heinicke, S. Fulda, O. Witt, A. Eggert, M. Fischer, H. E. Deubzer, Cell Death Dis. 2017, 8(3), e2635.
E. F. Bülbül, J. Melesina, H. S. Ibrahim, M. Abdelsalam, A. Vecchio, D. Robaa, M. Zessin, M. Schutkowski, W. Sippl, Molecules 2022, 27(8), 2526.
J. Liu, Y. Yu, J. Kelly, D. Sha, A.‐B. Alhassan, W. Yu, M. M. Maletic, J. L. Duffy, D. J. Klein, M. K. Holloway, S. Carroll, B. J. Howell, R. J. O. Barnard, S. Wolkenberg, J. A. Kozlowski, ACS Med. Chem. Lett. 2020, 11(12), 2476.
L. Whitehead, M. R. Dobler, B. Radetich, Y. Zhu, P. W. Atadja, T. Claiborne, J. E. Grob, A. Mcriner, M. R. Pancost, A. Patnaik, W. Shao, M. Shultz, R. Tichkule, R. A. Tommasi, B. Vash, P. Wang, T. Stams, Bioorg. Med. Chem. 2011, 19(15), 4626.
Schrödinger Release 2019‐1: Maestro, Schrödinger, LLC, New York, NY, 2019.
Schrödinger Release 2019‐1: Protein Preparation Wizard. Epik, Schrödinger, LLC, New York, NY, 2019; Impact, Schrödinger, LLC, New York, NY, 2019; Prime, Schrödinger, LLC, New York, NY, 2019.
G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman., J. Comput.‐Aided Mol. Des. 2013, 27(3), 221.
Schrödinger Release 2019‐1: Epik, Schrödinger, LLC, New York, NY, 2019.
J. R. Greenwood, D. Calkins, A. P. Sullivan, J. C. Shelley, J. Comput.‐Aided Mol. Des. 2010, 24(6–7), 591.
J. C. Shelley, A. Cholleti, L. L. Frye, J. R. Greenwood, M. R. Timlin, M. Uchimaya, J. Comput.‐Aided Mol. Des. 2007, 21(12), 681.
E. Ghazy, T. Heimburg, J. Lancelot, P. Zeyen, K. Schmidtkunz, A. Truhn, S. Darwish, C. V. Simoben, T. B. Shaik, F. Erdmann, M. Schmidt, D. Robaa, C. Romier, M. Jung, R. Pierce, W. Sippl, Eur. J. Med. Chem. 2021, 225, 113745.
E. Ghazy, P. Zeyen, D. Herp, M. Hügle, K. Schmidtkunz, F. Erdmann, D. Robaa, M. Schmidt, E. R. Morales, C. Romier, S. Günther, M. Jung, W. Sippl, Eur. J. Med. Chem. 2020, 200, 112338.
M. Marek, T. B. Shaik, T. Heimburg, A. Chakrabarti, J. Lancelot, E. Ramos‐Morales, C. Da Veiga, D. Kalinin, J. Melesina, D. Robaa, K. Schmidtkunz, T. Suzuki, R. Holl, E. Ennifar, R. J. Pierce, M. Jung, W. Sippl, C. Romier, J. Med. Chem. 2018, 61(22), 10000.
K. Vögerl, N. Ong, J. Senger, D. Herp, K. Schmidtkunz, M. Marek, M. Müller, K. Bartel, T. B. Shaik, N. J. Porter, D. Robaa, D. W. Christianson, C. Romier, W. Sippl, M. Jung, F. Bracher, J. Med. Chem. 2019, 62(3), 1138.
Schrödinger Release 2019‐1: LigPrep, Schrödinger, LLC, New York, NY, 2019.
E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D. S. Cerutti, G. Krilov, W. L. Jorgensen, R. Abel, R. A. Friesner, J. Chem. Theory Comput. 2016, 12(1), 281.
W. L. Jorgensen, D. S. Maxwell, J. Tirado‐Rives, J. Am. Chem. Soc. 1996, 118(45), 11225.
W. L. Jorgensen, J. Tirado‐Rives, J. Am. Chem. Soc. 1988, 110(6), 1657.
D. Shivakumar, J. Williams, Y. Wu, W. Damm, J. Shelley, W. Sherman, J. Chem. Theory Comput. 2010, 6(5), 1509.
Schrödinger Release 2019‐1: Glide, Schrödinger, LLC, New York, NY, 2019.
R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, P. S. Shenkin, J. Med. Chem. 2004, 47(7), 1739.
R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz, J. Med. Chem. 2006, 49(21), 6177.
T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, J. L. Banks, J. Med. Chem. 2004, 47(7), 1750.
Schrödinger Release 2019‐1. Desmond Molecular Dynamics System, D.E. Shaw Research, New York, NY, 2019, Maestro‐Desmond Interoperability Tools, Schrödinger, New York, NY, USA 2019.
K. J. Bowers, D. E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, D. E. Shaw. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 11‐ 17 Nov. 2006, Tampa, FL, USA 2006. p.43. https://doi.org/10.1109/SC.2006.54
M. Zessin, Z. Kutil, M. Meleshin, Z. Nováková, E. Ghazy, D. Kalbas, M. Marek, C. Romier, W. Sippl, C. Bařinka, M. Schutkowski, Biochemistry 2019, 58(48), 4777.
T. Heimburg, F. R. Kolbinger, P. Zeyen, E. Ghazy, D. Herp, K. Schmidtkunz, J. Melesina, T. B. Shaik, F. Erdmann, M. Schmidt, C. Romier, D. Robaa, O. Witt, I. Oehme, M. Jung, W. Sippl, J. Med. Chem. 2017, 60(24), 10188.