Substrate-Guided Development of HDAC11-Selective Inhibitors Featuring α‑Amino Amide Zinc-Binding Groups
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41179203
PubMed Central
PMC12573178
DOI
10.1021/acsomega.5c08195
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Histone deacetylases (HDACs) play a pivotal role in various biological pathways and represent interesting drug targets. Therefore, HDAC inhibitors (HDACi) with high isoform selectivity and a zinc-binding group different from hydroxamic acid, because of its low metabolic stability, are required. HDAC11, as a highly potent defatty-acylase, differs from other HDACs in its substrate preference. Starting from this finding, we developed specific inhibitors for HDAC11 based on a peptide containing a fatty-acylated lysine side chain as the selectivity tail. The introduction of different heteroatoms at the fatty acyl residue was used to generate potent zinc-binding groups in combination with the scissile amide bond, as well as to suppress substrate properties of the resulting compounds. Further optimization resulted in a highly potent and selective HDAC11 inhibitor 31, which exhibits low nanomolar inhibition against HDAC11 without targeting other HDACs and is active in cells. The data presented here may help expand the range of zinc-binding groups utilized in HDAC inhibitors. Furthermore, the concept of the selectivity tail was demonstrated to facilitate straightforward access to selective defatty-acylase inhibitors.
Zobrazit více v PubMed
Yang X. J., Seto E.. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 2008;9(3):206–218. doi: 10.1038/nrm2346. PubMed DOI PMC
Robinson E. L., Tharp C. A., Bagchi R. A., McKinsey T. A.. Gravi-D peptide disrupts HDAC11 association with an AKAP to stimulate adipocyte thermogenic signaling. J. Clin Invest. 2024;134(9):e177726. doi: 10.1172/JCI177726. PubMed DOI PMC
Liu H., Hu Q., D’Ercole A J., Ye P.. Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia. 2009;57(1):1–12. doi: 10.1002/glia.20729. PubMed DOI PMC
Cao J., Sun L., Aramsangtienchai P., Spiegelman N. A., Zhang X., Huang W., Seto E., Lin H.. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl. Acad. Sci. U. S. A. 2019;116(12):5487–5492. doi: 10.1073/pnas.1815365116. PubMed DOI PMC
Haberland M., Montgomery R. L., Olson E. N.. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009;10(1):32–42. doi: 10.1038/nrg2485. PubMed DOI PMC
Seto E., Yoshida M.. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713. doi: 10.1101/cshperspect.a018713. PubMed DOI PMC
Sauve A. A., Wolberger C., Schramm V. L., Boeke J. D.. The biochemistry of sirtuins. Annu. Rev. Biochem. 2006;75:435–465. doi: 10.1146/annurev.biochem.74.082803.133500. PubMed DOI
Aramsangtienchai P., Spiegelman N. A., He B., Miller S. P., Dai L., Zhao Y., Lin H.. HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine. ACS Chem. Biol. 2016;11(10):2685–2692. doi: 10.1021/acschembio.6b00396. PubMed DOI PMC
Feldman J. L., Dittenhafer-Reed K. E., Kudo N., Thelen J. N., Ito A., Yoshida M., Denu J. M.. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation. Biochemistry. 2015;54(19):3037–3050. doi: 10.1021/acs.biochem.5b00150. PubMed DOI PMC
Kutil Z., Novakova Z., Meleshin M., Mikesova J., Schutkowski M., Barinka C.. Histone Deacetylase 11 Is a Fatty-Acid Deacylase. ACS Chem. Biol. 2018;13(3):685–693. doi: 10.1021/acschembio.7b00942. PubMed DOI
Moreno-Yruela C., Galleano I., Madsen A. S., Olsen C. A.. Histone Deacetylase 11 Is an epsilon-N-Myristoyllysine Hydrolase. Cell Chem. Biol. 2018;25(7):849–856.e8. doi: 10.1016/j.chembiol.2018.04.007. PubMed DOI
Gao L., Cueto M. A., Asselbergs F., Atadja P.. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 2002;277(28):25748–55. doi: 10.1074/jbc.M111871200. PubMed DOI
Wang W., Fu L., Li S., Xu Z., Li X.. Histone deacetylase 11 suppresses p53 expression in pituitary tumor cells. Cell Biol. Int. 2017;41(12):1290–1295. doi: 10.1002/cbin.10834. PubMed DOI
Gong D., Zeng Z., Yi F., Wu J.. Inhibition of histone deacetylase 11 promotes human liver cancer cell apoptosis. Am. J. Transl Res. 2019;11(2):983–990. PubMed PMC
Hurtado E., Nunez-Alvarez Y., Munoz M., Gutierrez-Caballero C., Casas J., Pendas A. M., Peinado M. A., Suelves M.. HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle. FEBS J. 2021;288(3):902–919. doi: 10.1111/febs.15456. PubMed DOI
Villagra A., Cheng F., Wang H. W., Suarez I., Glozak M., Maurin M., Nguyen D., Wright K. L., Atadja P. W., Bhalla K., Pinilla-Ibarz J., Seto E., Sotomayor E. M.. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol. 2009;10(1):92–100. doi: 10.1038/ni.1673. PubMed DOI PMC
Bagchi R. A., Ferguson B. S., Stratton M. S., Hu T., Cavasin M. A., Sun L., Lin Y. H., Liu D., Londono P., Song K., Pino M. F., Sparks L. M., Smith S. R., Scherer P. E., Collins S., Seto E., McKinsey T. A.. HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight. 2018;3(15):e120159. doi: 10.1172/jci.insight.120159. PubMed DOI PMC
Sun L., Marin de Evsikova C., Bian K., Achille A., Telles E., Pei H., Seto E.. Programming and Regulation of Metabolic Homeostasis by HDAC11. EBioMedicine. 2018;33:157–168. doi: 10.1016/j.ebiom.2018.06.025. PubMed DOI PMC
Zhang F., Yue K., Sun S., Lu S., Jia G., Zha Y., Zhang S., Chou C. J., Liao C., Li X., Duan Y.. Targeting Histone Deacetylase 11 with a Highly Selective Inhibitor for the Treatment of MASLD. Adv. Sci. (Weinh) 2025;12:e2412903. doi: 10.1002/advs.202412903. PubMed DOI PMC
Deubzer H. E., Schier M. C., Oehme I., Lodrini M., Haendler B., Sommer A., Witt O.. HDAC11 is a novel drug target in carcinomas. Int. J. Cancer. 2013;132(9):2200–8. doi: 10.1002/ijc.27876. PubMed DOI
Bora-Singhal N., Mohankumar D., Saha B., Colin C. M., Lee J. Y., Martin M. W., Zheng X., Coppola D., Chellappan S.. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci. Rep. 2020;10(1):4722. doi: 10.1038/s41598-020-61295-6. PubMed DOI PMC
Li R., Wu X., Zhao P., Xue K., Li J.. A pan-cancer analysis identifies HDAC11 as an immunological and prognostic biomarker. FASEB J. 2022;36(7):e22326. doi: 10.1096/fj.202101742RR. PubMed DOI
Yang M., Zhao W., Zhang J., Liu L., Tian S., Miao Y., Jia Y., Wang L., Chai Q., Wang Q., Liu F., Zhang Y., You X.. HDAC11 Inhibition as a Potential Therapeutic Strategy for AML: Target Identification, Lead Discovery, Antitumor Potency, and Mechanism Investigation. J. Med. Chem. 2025;68(8):8124–8142. doi: 10.1021/acs.jmedchem.4c02550. PubMed DOI
Bolden J. E., Peart M. J., Johnstone R. W.. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006;5(9):769–84. doi: 10.1038/nrd2133. PubMed DOI
Duvic M., Talpur R., Ni X., Zhang C., Hazarika P., Kelly C., Chiao J. H., Reilly J. F., Ricker J. L., Richon V. M., Frankel S. R.. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL) Blood. 2007;109(1):31–9. doi: 10.1182/blood-2006-06-025999. PubMed DOI PMC
Molife L. R., de Bono J. S.. Belinostat: clinical applications in solid tumors and lymphoma. Expert Opin Investig Drugs. 2011;20(12):1723–32. doi: 10.1517/13543784.2011.629604. PubMed DOI
Garnock-Jones K. P.. Panobinostat: first global approval. Drugs. 2015;75(6):695–704. doi: 10.1007/s40265-015-0388-8. PubMed DOI
Celesia A., Notaro A., Franzo M., Lauricella M., D’Anneo A., Carlisi D., Giuliano M., Emanuele S.. The Histone Deacetylase Inhibitor ITF2357 (Givinostat) Targets Oncogenic BRAF in Melanoma Cells and Promotes a Switch from Pro-Survival Autophagy to Apoptosis. Biomedicines. 2022;10(8):1994. doi: 10.3390/biomedicines10081994. PubMed DOI PMC
Friedrich A., Assmann A. S., Schumacher L., Stuijvenberg J. V., Kassack M. U., Schulz W. A., Roos W. P., Hansen F. K., Pflieger M., Kurz T., Fritz G.. In Vitro Assessment of the Genotoxic Hazard of Novel Hydroxamic Acid- and Benzamide-Type Histone Deacetylase Inhibitors (HDACi) Int. J. Mol. Sci. 2020;21(13):4747. doi: 10.3390/ijms21134747. PubMed DOI PMC
Shen S., Kozikowski A. P.. Why Hydroxamates May Not Be the Best Histone Deacetylase Inhibitors--What Some May Have Forgotten or Would Rather Forget? ChemMedChem. 2016;11(1):15–21. doi: 10.1002/cmdc.201500486. PubMed DOI PMC
Lee M. S., Isobe M.. Metabolic activation of the potent mutagen, 2-naphthohydroxamic acid, in Salmonella typhimurium TA98. Cancer Res. 1990;50(14):4300–4307. PubMed
Bornes K. E., Moody M. A., Huckaba T. M., Benz M. C., McConnell E. C., Foroozesh M., Barnes V. H., Collins-Burow B. M., Burow M. E., Watt T. J., Toro T. B.. Lysine deacetylase inhibitors have low selectivity in cells and exhibit predominantly off-target effects. FEBS Open Bio. 2025;15(1):94–107. doi: 10.1002/2211-5463.13896. PubMed DOI PMC
Ibrahim H. S., Guo M., Hilscher S., Erdmann F., Schmidt M., Schutkowski M., Sheng C., Sippl W.. Probing class I histone deacetylases (HDAC) with proteolysis targeting chimera (PROTAC) for the development of highly potent and selective degraders. Bioorg Chem. 2024;153:107887. doi: 10.1016/j.bioorg.2024.107887. PubMed DOI
Sun P., Wang J., Khan K. S., Yang W., Ng B. W., Ilment N., Zessin M., Bulbul E. F., Robaa D., Erdmann F., Schmidt M., Romier C., Schutkowski M., Cheng A. S., Sippl W.. Development of Alkylated Hydrazides as Highly Potent and Selective Class I Histone Deacetylase Inhibitors with T cell Modulatory Properties. J. Med. Chem. 2022;65(24):16313–16337. doi: 10.1021/acs.jmedchem.2c01132. PubMed DOI
Bora-Tatar G., Dayangac-Erden D., Demir A. S., Dalkara S., Yelekci K., Erdem-Yurter H.. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg. Med. Chem. 2009;17(14):5219–28. doi: 10.1016/j.bmc.2009.05.042. PubMed DOI
Fruhauf A., Meyer-Almes F. J.. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules. 2021;26(17):5151. doi: 10.3390/molecules26175151. PubMed DOI PMC
McKinsey T. A.. Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart. J. Mol. Cell Cardiol. 2011;51(4):491–6. doi: 10.1016/j.yjmcc.2010.11.009. PubMed DOI
Ho T. T., Peng C., Seto E., Lin H.. Trapoxin A Analogue as a Selective Nanomolar Inhibitor of HDAC11. ACS Chem. Biol. 2023;18(4):803–809. doi: 10.1021/acschembio.2c00840. PubMed DOI PMC
Son S. I., Cao J., Zhu C. L., Miller S. P., Lin H.. Activity-Guided Design of HDAC11-Specific Inhibitors. ACS Chem. Biol. 2019;14(7):1393–1397. doi: 10.1021/acschembio.9b00292. PubMed DOI PMC
Martin M. W., Lee J. Y., Lancia D. R. Jr., Ng P. Y., Han B., Thomason J. R., Lynes M. S., Marshall C. G., Conti C., Collis A., Morales M. A., Doshi K., Rudnitskaya A., Yao L., Zheng X.. Discovery of novel N-hydroxy-2-arylisoindoline-4-carboxamides as potent and selective inhibitors of HDAC11. Bioorg. Med. Chem. Lett. 2018;28(12):2143–2147. doi: 10.1016/j.bmcl.2018.05.021. PubMed DOI
Baselious F., Hilscher S., Hagemann S., Tripathee S., Robaa D., Barinka C., Hüttelmaier S., Schutkowski M., Sippl W.. Utilization of an Optimized AlphaFold Protein Model for Structure-Based Design of a Selective HDAC11 Inhibitor with Anti-neuroblastoma Activity. Arch Pharm. 2024;357(10):e2400486. doi: 10.1002/ardp.202400486. PubMed DOI
Baselious F., Hilscher S., Robaa D., Barinka C., Schutkowski M., Sippl W.. Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor. Int. J. Mol. Sci. 2024;25(2):1358. doi: 10.3390/ijms25021358. PubMed DOI PMC
Son S. I., Su D., Ho T. T., Lin H.. Garcinol Is an HDAC11 Inhibitor. ACS Chem. Biol. 2020;15(11):2866–2871. doi: 10.1021/acschembio.0c00719. PubMed DOI PMC
Piekarz R. L., Frye R., Turner M., Wright J. J., Allen S. L., Kirschbaum M. H., Zain J., Prince H. M., Leonard J. P., Geskin L. J., Reeder C., Joske D., Figg W. D., Gardner E. R., Steinberg S. M., Jaffe E. S., Stetler-Stevenson M., Lade S., Fojo A. T., Bates S. E.. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin Oncol. 2009;27(32):5410–7. doi: 10.1200/JCO.2008.21.6150. PubMed DOI PMC
Kutil Z., Mikesova J., Zessin M., Meleshin M., Novakova Z., Alquicer G., Kozikowski A., Sippl W., Barinka C., Schutkowski M.. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega. 2019;4(22):19895–19904. doi: 10.1021/acsomega.9b02808. PubMed DOI PMC
Li S., Fossati G., Marchetti C., Modena D., Pozzi P., Reznikov L. L., Moras M. L., Azam T., Abbate A., Mascagni P., Dinarello C. A.. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. J. Biol. Chem. 2015;290(4):2368–78. doi: 10.1074/jbc.M114.618454. PubMed DOI PMC
Matalon S., Palmer B. E., Nold M. F., Furlan A., Kassu A., Fossati G., Mascagni P., Dinarello C. A.. The histone deacetylase inhibitor ITF2357 decreases surface CXCR4 and CCR5 expression on CD4(+) T-cells and monocytes and is superior to valproic acid for latent HIV-1 expression in vitro. J. Acquir Immune Defic Syndr. 2010;54(1):1–9. doi: 10.1097/QAI.0b013e3181d3dca3. PubMed DOI PMC
Zessin M., Meleshin M., Simic Z., Kalbas D., Arbach M., Gebhardt P., Melesina J., Liebscher S., Bordusa F., Sippl W., Barinka C., Schutkowski M.. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher. Bioorg Chem. 2021;117:105425. doi: 10.1016/j.bioorg.2021.105425. PubMed DOI
Dankova D., Nielsen A. L., Zarda A., Hansen T. N., Hesse M., Benova M., Tsiris A., Bartling C. R. O., Will E. J., Stromgaard K., Moreno-Yruela C., Heinis C., Olsen C. A.. Discovery of De Novo Macrocycle Inhibitors of Histone Deacetylase 11. JACS Au. 2025;5(3):1299–1307. doi: 10.1021/jacsau.4c01148. PubMed DOI PMC
Ranganathan R., Lenti G., Tassone N. M., Scannell B. J., Southern C. A., Karver C. E.. Design and application of a fluorogenic assay for monitoring inflammatory caspase activity. Anal. Biochem. 2018;543:1–7. doi: 10.1016/j.ab.2017.11.023. PubMed DOI
Kopranovic A., Meyer-Almes F. J.. Discovery and Characterization of Novel Non-Hydroxamate HDAC11 Inhibitors. Int. J. Mol. Sci. 2025;26(13):5950. doi: 10.3390/ijms26135950. PubMed DOI PMC
Nishimura O., Suenaga M., Ohmae H., Tsuji S., Suenaga M., Fujino M.. An efficient chemical method for removing N-terminal extra methionine from recombinant methionylated human growth hormone. Chem. Commun. 1998;10:1135–1136. doi: 10.1039/a801297k. DOI
Zessin M., Kutil Z., Meleshin M., Novakova Z., Ghazy E., Kalbas D., Marek M., Romier C., Sippl W., Barinka C., Schutkowski M.. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry. 2019;58(48):4777–4789. doi: 10.1021/acs.biochem.9b00786. PubMed DOI
Whitehead L., Dobler M. R., Radetich B., Zhu Y., Atadja P. W., Claiborne T., Grob J. E., McRiner A., Pancost M. R., Patnaik A., Shao W., Shultz M., Tichkule R., Tommasi R. A., Vash B., Wang P., Stams T.. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg. Med. Chem. 2011;19(15):4626–34. doi: 10.1016/j.bmc.2011.06.030. PubMed DOI
Greenwood S. O. R., Chan A. W. E., Hansen D. F., Marson C. M.. Potent non-hydroxamate inhibitors of histone deacetylase-8: Role and scope of an isoindolin-2-yl linker with an alpha-amino amide as the zinc-binding unit. Bioorg. Med. Chem. Lett. 2020;30(5):126926. doi: 10.1016/j.bmcl.2019.126926. PubMed DOI
Włostowski M., Czarnocka S., Maciejewski P.. Efficient S-alkylation of cysteine in the presence of 1,1,3,3-tetramethylguanidine. Tetrahedron Lett. 2010;51(46):5977–5979. doi: 10.1016/j.tetlet.2010.08.097. DOI
Mellini P., Itoh Y., Elboray E. E., Tsumoto H., Li Y., Suzuki M., Takahashi Y., Tojo T., Kurohara T., Miyake Y., Miura Y., Kitao Y., Kotoku M., Iida T., Suzuki T.. Identification of Diketopiperazine-Containing 2-Anilinobenzamides as Potent Sirtuin 2 (SIRT2)-Selective Inhibitors Targeting the ″Selectivity Pocket″, Substrate-Binding Site, and NAD(+)-Binding Site. J. Med. Chem. 2019;62(12):5844–5862. doi: 10.1021/acs.jmedchem.9b00255. PubMed DOI
Schuster S., Roessler C., Meleshin M., Zimmermann P., Simic Z., Kambach C., Schiene-Fischer C., Steegborn C., Hottiger M. O., Schutkowski M.. A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions. Sci. Rep. 2016;6:22643. doi: 10.1038/srep22643. PubMed DOI PMC
Baselious F., Robaa D., Sippl W.. Utilization of AlphaFold models for drug discovery: Feasibility and challenges. Histone deacetylase 11 as a case study. Comput. Biol. Med. 2023;167:107700. doi: 10.1016/j.compbiomed.2023.107700. PubMed DOI
Charron G., Zhang M. M., Yount J. S., Wilson J., Raghavan A. S., Shamir E., Hang H. C.. Robust fluorescent detection of protein fatty-acylation with chemical reporters. J. Am. Chem. Soc. 2009;131(13):4967–75. doi: 10.1021/ja810122f. PubMed DOI
Faraco G., Pancani T., Formentini L., Mascagni P., Fossati G., Leoni F., Moroni F., Chiarugi A.. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol. Pharmacol. 2006;70(6):1876–84. doi: 10.1124/mol.106.027912. PubMed DOI
Zessin M., Meleshin M., Hilscher S., Schiene-Fischer C., Barinka C., Jung M., Schutkowski M.. Continuous Fluorescent Sirtuin Activity Assay Based on Fatty Acylated Lysines. Int. J. Mol. Sci. 2023;24(8):7416. doi: 10.3390/ijms24087416. PubMed DOI PMC
Noritsugu K., Suzuki T., Dodo K., Ohgane K., Ichikawa Y., Koike K., Morita S., Umehara T., Ogawa K., Sodeoka M., Dohmae N., Yoshida M., Ito A.. Lysine long-chain fatty acylation regulates the TEAD transcription factor. Cell Rep. 2023;42(4):112388. doi: 10.1016/j.celrep.2023.112388. PubMed DOI