The impact of insect herbivory on biogeochemical cycling in broadleaved forests varies with temperature
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
682707
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
871120
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
NE/R016860/1
RCUK | Natural Environment Research Council (NERC)
PubMed
39019847
PubMed Central
PMC11254921
DOI
10.1038/s41467-024-50245-9
PII: 10.1038/s41467-024-50245-9
Knihovny.cz E-zdroje
- MeSH
- býložravci * fyziologie MeSH
- dusík * metabolismus MeSH
- ekosystém MeSH
- fosfor metabolismus MeSH
- hmyz * fyziologie MeSH
- koloběh uhlíku MeSH
- lesy * MeSH
- listy rostlin * metabolismus MeSH
- stromy metabolismus MeSH
- teplota * MeSH
- uhlík metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík * MeSH
- fosfor MeSH
- uhlík MeSH
Herbivorous insects alter biogeochemical cycling within forests, but the magnitude of these impacts, their global variation, and drivers of this variation remain poorly understood. To address this knowledge gap and help improve biogeochemical models, we established a global network of 74 plots within 40 mature, undisturbed broadleaved forests. We analyzed freshly senesced and green leaves for carbon, nitrogen, phosphorus and silica concentrations, foliar production and herbivory, and stand-level nutrient fluxes. We show more nutrient release by insect herbivores at non-outbreak levels in tropical forests than temperate and boreal forests, that these fluxes increase strongly with mean annual temperature, and that they exceed atmospheric deposition inputs in some localities. Thus, background levels of insect herbivory are sufficiently large to both alter ecosystem element cycling and influence terrestrial carbon cycling. Further, climate can affect interactions between natural populations of plants and herbivores with important consequences for global biogeochemical cycles across broadleaved forests.
Appalchian State University 572 Rivers Street Boone NC 28608 USA
CONICET CENAC APN Universidad Nacional del Comahue Argentina
CSIR Forestry Research Institute of Ghana Kumasi Ashanti Ghana
Department of Ecology and Environmental Science Umeå University Linnaeus väg 6 Umeå Sweden
Department of Ecology University of Innsbruck Sterwartestraße 15 Innsbruck Austria
Department of Geography University College London London UK
Department of Natural Resources Management CSIR College of Science and Technology Kumasi Ghana
Department of Physical Geography and Ecosystem Science Lund University Lund Sweden
Department of Plant Systematics University of Bayreuth Bayreuth Germany
Escuela de Ingeniería Forestal Tecnológico de Costa Rica Cartago Costa Rica
Forest Research Institute University of Quebec in Abitibi Témiscamingue QC Canada
Forest Research Institute University of the Sunshine Coast Sippy Downs Queensland Australia
Institute of Ecology Ilia State University 3 5 Cholokashvili Ave 0169 Tbilisi Georgia
Institute of Zoology Ilia State University 3 5 Cholokashvili Ave 0169 Tbilisi Georgia
Kevo Subarctic Research Institute Biodiversity Unit University of Turku 20014 Turku Finland
Mammal Research Institute Polish Academy of Sciences Ul Stoczek 1 17‑230 Białowieża Poland
Pacific Southwest Research Station USDA Forest Service Hilo Hawai'i USA
Pitirim Sorokin Syktyvkar State University 455 Oktyabrsky prosp 167001 Syktyvkar Russia
Reforest Africa PO Box 5 Mang'ula Kilombero District Tanzania
Research Institute of Tropical Forestry Chinese Academy of Forestry Guangzhou 510520 China
Rubenstein School of Environment and Natural Resources University of Vermont Burlington VT 05405 USA
School of Geography University of Leeds Leeds UK
Senckenberg Biodiversity and Climate Research Centre Frankfurt Germany
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf 8903 Switzerland
The Silva Tarouca Research Institute Květnové náměstí 391 Průhonice 252 43 Czech Republic
Yugra State University 628012 Chekhova street 16 Khanty Mansiysk Russia
Zobrazit více v PubMed
McNaughton SJ, Oesterheld M, Frank DA, Williams KJ. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature. 1989;34:142–144. doi: 10.1038/341142a0. PubMed DOI
Huntly N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Evol. Syst. 1991;22:477–503. doi: 10.1146/annurev.es.22.110191.002401. DOI
Herms DA, Mattson WJ. The dilemma of plants: to grow or defend. Q. Rev. Biol. 1992;67:283–335. doi: 10.1086/417659. DOI
Anderegg WR, et al. Tree mortality from drought, insects, and their interactions in a changing climate. N. Phytol. 2015;208:674–683. doi: 10.1111/nph.13477. PubMed DOI
Pringle RM, et al. Impacts of large herbivores on terrestrial ecosystems. Curr. Biol. 2023;33:R584–R610. doi: 10.1016/j.cub.2023.04.024. PubMed DOI
Kozlov, M. V. & Zvereva, E. L. in Progress In Botany Vol. 79 (eds Cánovas, F., Lüttge, U., Matyssek, R.) 313–355 (Springer, Cham, 2017).
Risch AC, et al. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nat. Commun. 2018;9:3684. doi: 10.1038/s41467-018-06105-4. PubMed DOI PMC
Bardgett, R. D. & Wardle, D. A. Aboveground–Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change 312 (OUP Oxford, 2010).
Hartley, S. E. & Jones, T. H. in Insects And Ecosystem Function Vol. 173 (eds Weisser, W.W. & Siemann, E.) 27–52 (Springer–Verlag, Heidelberg, 2008).
Metcalfe DB, et al. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol. Lett. 2014;17:324–332. doi: 10.1111/ele.12233. PubMed DOI
Chapin FS. The mineral nutrition of wild plants. Annu. Rev. Ecol. Evol. Syst. 1980;11:233–260. doi: 10.1146/annurev.es.11.110180.001313. DOI
Johnson DW, Turner J. Tamm review: nutrient cycling in forests: a historical look and newer developments. Ecol. Manag. 2019;444:344–373. doi: 10.1016/j.foreco.2019.04.052. DOI
Street‐Perrott F, Barker P. Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf. Process. Landf. 2008;33:1436–1457. doi: 10.1002/esp.1712. DOI
Cooke J, Leishman MR. Is plant ecology more siliceous than we realise? Trends Plant Sci. 2011;16:61–68. doi: 10.1016/j.tplants.2010.10.003. PubMed DOI
Hwang BC, Metcalfe DB. Reviews and syntheses: impacts of plant-silica–herbivore interactions on terrestrial biogeochemical cycling. Biogeosciences. 2021;18:1259–1268. doi: 10.5194/bg-18-1259-2021. DOI
Kozlov MV, Lanta V, Zverev V, Zvereva EL. Global patterns in background losses of woody plant foliage to insects. Glob. Ecol. Biogeogr. 2015;24:1126–1135. doi: 10.1111/geb.12347. DOI
Schmitt CB, et al. Global analysis of the protection status of the world’s forests. Biol. Conserv. 2009;142:2122–2130. doi: 10.1016/j.biocon.2009.04.012. DOI
Fagan WF, et al. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 2002;160:784–802. doi: 10.1086/343879. PubMed DOI
Connahs H, Aiello A, Van Bael S, Rodríguez–Castañeda G. Caterpillar abundance and parasitism in a seasonally dry versus wet tropical forest of Panama. J. Trop. Ecol. 2011;27:51–58. doi: 10.1017/S0266467410000568. DOI
Lemoine NP, Burkepile DE, Parker JD. Variable effects of temperature on insect herbivory. PeerJ. 2012;2:e376. doi: 10.7717/peerj.376. PubMed DOI PMC
Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO. Changing sources of nutrients during four million years of ecosystem development. Nature. 1999;397:491–497. doi: 10.1038/17276. DOI
Du E, et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020;13:221–226. doi: 10.1038/s41561-019-0530-4. DOI
Reyer C. Forest productivity under environmental change—a review of stand–scale modeling studies. Curr. Rep. 2015;1:53–68. doi: 10.1007/s40725-015-0009-5. DOI
Seidl R, et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017;7:395–402. doi: 10.1038/nclimate3303. PubMed DOI PMC
Kristensen JA, Michelsen A, Metcalfe DB. Background insect herbivory increases with local elevation but makes minor contribution to element cycling along natural gradients in the Subarctic. Ecol. Evol. 2020;10:11684–11698. doi: 10.1002/ece3.6803. PubMed DOI PMC
Lovett GM, et al. Insect defoliation and nitrogen cycling in forests: laboratory, plot, and watershed studies indicate that most of the nitrogen released from forest foliage as a result of defoliation by insects is redistributed within the ecosystem, whereas only a small fraction of nitrogen is lost by leaching. Biosci. 2002;52:335–341. doi: 10.1641/0006-3568(2002)052[0335:IDANCI]2.0.CO;2. DOI
Boulanger Y, et al. Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern quebec for the last 400 years. Can. J. Res. 2012;42:1264–1276. doi: 10.1139/x2012-069. DOI
Sackett TE, Smith SM, Basiliko N. Indirect and direct effects of exotic earthworms on soil nutrient and carbon pools in north American temperate forests. Soil Biol. Biochem. 2013;57:459–467. doi: 10.1016/j.soilbio.2012.08.015. DOI
Jonsson M, Wardle DA. Context dependency of litter‐mixing effects on decomposition and nutrient release across a long‐term chronosequence. Oikos. 2008;117:1674–1682. doi: 10.1111/j.1600-0706.2008.16810.x. DOI
Metcalfe DB, Crutsinger GM, Kumordzi BB, Wardle DA. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. Ecology. 2016;97:124–132. doi: 10.1890/15-0302.1. PubMed DOI
Garcia LC, Eubanks MD. Overcompensation for insect herbivory: a review and meta‐analysis of the evidence. Ecology. 2019;100:e02585. doi: 10.1002/ecy.2585. PubMed DOI
Visakorpi K, et al. Small–scale indirect plant responses to insect herbivory could have major impacts on canopy photosynthesis and isoprene emission. N. Phytol. 2019;220:799–810. doi: 10.1111/nph.15338. PubMed DOI
Harvey JA, Heinen R, Gols R, Thakur MP. Climate change‐mediated temperature extremes and insects: from outbreaks to breakdowns. Clim. Chang. Biol. 2020;26:6685–6701. doi: 10.1111/gcb.15377. PubMed DOI PMC
Weissflog A, Markesteijn L, Lewis OT, Comita LS, Engelbrecht BM. Contrasting patterns of insect herbivory and predation pressure across a tropical rainfall gradient. Biotrop. 2018;50:302–311. doi: 10.1111/btp.12513. DOI
Matthews B, et al. Transpiration deficits increase host susceptibility to bark beetle attack: experimental observations and practical outcomes for Ips typographus hazard assessment. Agric. Meteorol. 2018;263:69–89. doi: 10.1016/j.agrformet.2018.08.004. DOI
Mezei P, Potterf M, Škvarenina J, Rasmussen JG, Jakuš R. Potential solar radiation as a driver for bark beetle infestation on a landscape scale. Forests. 2019;10:604. doi: 10.3390/f10070604. DOI
Loughnan D, Williams JL. Climate and leaf traits, not latitude, explain variation in plant–herbivore interactions across a species’ range. J. Ecol. 2019;107:913–922. doi: 10.1111/1365-2745.13065. DOI
Pincebourde S, Woods HA. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change. Curr. Opin. Insect Sci. 2020;41:63–70. doi: 10.1016/j.cois.2020.07.001. PubMed DOI
Fürstenberg-Hägg J, Zagrobelny M, Bak S. Plant defense against insect herbivores. Int. J. Mol. Sci. 2013;14:10242–10297. doi: 10.3390/ijms140510242. PubMed DOI PMC
Souri Z, Khanna K, Karimi N, Ahmad P. Silicon and plants: current knowledge and future prospects. J. Plant Growth Regul. 2021;40:906–925. doi: 10.1007/s00344-020-10172-7. DOI
Clissold FJ, Sanson GD, Read J, Simpson SJ. Gross vs. net income: how plant toughness affects performance of an insect herbivore. Ecology. 2009;90:3393–3405. doi: 10.1890/09-0130.1. PubMed DOI
Hou E, et al. Global meta–analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-020-14492-w. PubMed DOI PMC
Huang X, et al. Global distributions of foliar nitrogen and phosphorus resorption in forest ecosystems. Sci. Total Environ. 2023;871:162075. doi: 10.1016/j.scitotenv.2023.162075. PubMed DOI
Ostle NJ, et al. Integrating plant–soil interactions into global carbon cycle models. J. Ecol. 2009;97:851–863. doi: 10.1111/j.1365-2745.2009.01547.x. DOI
Kyker‐Snowman E, et al. Increasing the spatial and temporal impact of ecological research: a roadmap for integrating a novel terrestrial process into an earth system model. Glob. Chang. Biol. 2022;28:665–684. doi: 10.1111/gcb.15894. PubMed DOI PMC
Loidi J, Navarro-Sánchez G, Vynokurov D. A vector map of the world’s terrestrial biotic units: subbiomes, biomes, ecozones and domains. Veg. Classif. Surv. 2023;4:59–61.
Vola, J., Rautio, P. & Rantala, O. in Researching With Proximity: Relational Methodologies For The Anthropocene (eds. Rantala, O., Kinnunen, V., Höckert, E.) 147–164 (Springer Nature, Cham, 2023).
Breuning–Madsen H, Ehlers CB, Borggaard OK. The impact of perennial cormorant colonies on soil phosphorus status. Geoderma. 2008;148:51–54. doi: 10.1016/j.geoderma.2008.09.002. DOI
Zahajská, P. Diatom–Rich Sediment Formation In Lakes, 132 (Lund University, 2021).
Alliende MC. Demographic studies of a dioecious tree. II. The distribution of leaf predation within and between trees. J. Ecol. 1989;77:1048–1058. doi: 10.2307/2260822. DOI
Johnson MT, Bertrand JA, Turcotte MM. Precision and accuracy in quantifying herbivory. Ecol. Entomol. 2016;41:112–121. doi: 10.1111/een.12280. DOI
Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012;82:205–220. doi: 10.1890/11-0416.1. DOI
Wiegert RG, Petersen CE. Energy transfer in insects. Ann. Rev. Entomol. 1983;28:455–486. doi: 10.1146/annurev.en.28.010183.002323. DOI
Brahney J, Mahowald N, Ward DS, Ballantyne AP, Neff JC. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry? global biogeochem. Cycles. 2015;29:1369–1383. doi: 10.1002/2015GB005137. DOI
Hartmann J, Moosdorf N, Lauerwald R, Hinderer M, West AJ. Global chemical weathering and associated P–release—the role of lithology, temperature and soil properties. Chem. Geol. 2014;363:145–163. doi: 10.1016/j.chemgeo.2013.10.025. DOI
Zhang L, Dawes WR, Walker GR. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001;37:701–708. doi: 10.1029/2000WR900325. DOI
Singer MB, et al. Hourly potential evapotranspiration at 0.1 resolution for the global land surface from 1981-present. Sci. Data. 2021;8:224. doi: 10.1038/s41597-021-01003-9. PubMed DOI PMC
R Core Team. R: A Language And Environment For Statistical Computing. https://www.r-project.org/ (2023).
Fox, J. & Weisberg, S. An R Companion To Applied Regression 3rd edn, 308 (SAGE Publications, 2019).
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed–effects models using ime4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Schielzeth H, et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 2020;11:1141–1152. doi: 10.1111/2041-210X.13434. DOI
Luke SG. Evaluating significance in linear mixed–effects models in R. Behav. Res. Methods. 2017;49:1494–1502. doi: 10.3758/s13428-016-0809-y. PubMed DOI
Barton, K. & Barton, M. K. Package ‘Mumin’. Version 1.47.5https://cran.r-project.org/web/packages/MuMIn/index.html (2023).
Hwang, B. et al. Datasets and R code for Hwang, B. et al. The impact of insect herbivory on biogeochemical cycling in broadleaved forests varies with temperature. Figshare10.6084/m9.figshare.25725594 (2024). PubMed PMC