Intercellular interaction between FAP+ fibroblasts and CD150+ inflammatory monocytes mediates fibrostenosis in Crohn's disease
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
39042469
PubMed Central
PMC11324301
DOI
10.1172/jci173835
PII: 173835
Knihovny.cz E-zdroje
- Klíčová slova
- Fibrosis, Gastroenterology, Inflammation, Inflammatory bowel disease, Monocytes,
- MeSH
- Crohnova nemoc * metabolismus patologie imunologie MeSH
- dospělí MeSH
- endopeptidasy metabolismus genetika MeSH
- extracelulární matrix metabolismus patologie MeSH
- fibroblasty * metabolismus patologie MeSH
- fibróza * MeSH
- ileum patologie metabolismus imunologie MeSH
- jaderné proteiny metabolismus genetika MeSH
- lidé MeSH
- mezibuněčná komunikace MeSH
- monocyty * metabolismus patologie imunologie MeSH
- myši MeSH
- receptory buněčného povrchu metabolismus genetika MeSH
- transkripční faktor Twist * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endopeptidasy MeSH
- jaderné proteiny MeSH
- receptory buněčného povrchu MeSH
- transkripční faktor Twist * MeSH
- TWIST1 protein, human MeSH Prohlížeč
Crohn's disease (CD) is marked by recurring intestinal inflammation and tissue injury, often resulting in fibrostenosis and bowel obstruction, necessitating surgical intervention with high recurrence rates. To elucidate the mechanisms underlying fibrostenosis in CD, we analyzed the transcriptome of cells isolated from the transmural ileum of patients with CD, including a trio of lesions from each patient: non-affected, inflamed, and stenotic ileum samples, and compared them with samples from patients without CD. Our computational analysis revealed that profibrotic signals from a subset of monocyte-derived cells expressing CD150 induced a disease-specific fibroblast population, resulting in chronic inflammation and tissue fibrosis. The transcription factor TWIST1 was identified as a key modulator of fibroblast activation and extracellular matrix (ECM) deposition. Genetic and pharmacological inhibition of TWIST1 prevents fibroblast activation, reducing ECM production and collagen deposition. Our findings suggest that the myeloid-stromal axis may offer a promising therapeutic target to prevent fibrostenosis in CD.
Centre for Inflammation Research University of Edinburgh Edinburgh United Kingdom
Department of Abdominal Surgery University Hospitals Leuven Leuven Belgium
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Biomedical Sciences Humanitas University Milan Italy
Department of Gastroenterology and Hepatology University Hospitals Leuven Leuven Belgium
Department of Gastroenterology Hepatology Leiden University Medical Center Leiden Netherlands
Department of Microbiology Immunology and Transplantation KU Leuven Leuven Belgium
Department of Pharmaceutical Sciences University of Antwerp Antwerp Belgium
Institute of Hematology and Blood Transfusion Prague Czech Republic
International Clinical Research Center Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Laboratory of Pathology University Hospitals Leuven Leuven Belgium
Leuven Institute for Single Cell Omics KU Leuven Leuven Belgium
Zobrazit více v PubMed
Ng SC, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI
Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12(12):720–727. doi: 10.1038/nrgastro.2015.150. PubMed DOI
Kappelman MD, et al. Utilization of healthcare resources by U.S. children and adults with inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(1):62–68. doi: 10.1002/ibd.21371. PubMed DOI PMC
Mowat C, et al. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011;60(5):571–607. doi: 10.1136/gut.2010.224154. PubMed DOI
Carter MJ. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2004;53(suppl 5):V1–V16. doi: 10.1136/gut.2004.043372. PubMed DOI PMC
Frolkis AD, et al. Risk of surgery for inflammatory bowel diseases has decreased over time: a systematic review and meta-analysis of population-based studies. Gastroenterology. 2013;145(5):996–1006. doi: 10.1053/j.gastro.2013.07.041. PubMed DOI
Lee HS, et al. Novel treatments for inflammatory bowel disease. Korean J Intern Med. 2018;33(1):20–27. doi: 10.3904/kjim.2017.393. PubMed DOI PMC
Present DH, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med. 1999;340(18):1398–1405. doi: 10.1056/NEJM199905063401804. PubMed DOI
Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14(5):269–278. doi: 10.1038/nrgastro.2016.208. PubMed DOI
Raine T, Danese S. Breaking through the therapeutic ceiling: what will it take? Gastroenterology. 2022;162(5):1507–1511. doi: 10.1053/j.gastro.2021.09.078. PubMed DOI
Murthy SK, et al. Introduction of anti-TNF therapy has not yielded expected declines in hospitalisation and intestinal resection rates in inflammatory bowel diseases: a population-based interrupted time series study. Gut. 2020;69(2):274–282. doi: 10.1136/gutjnl-2019-318440. PubMed DOI PMC
Van Beelen Granlund B, et al. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn’s disease and ulcerative colitis. PLoS One. 2013;8(2):e56818. doi: 10.1371/journal.pone.0056818. PubMed DOI PMC
Pelia R, et al. Profiling non-coding RNA levels with clinical classifiers in pediatric Crohn’s disease. BMC Med Genomics. 2021;14(1):194. doi: 10.1186/s12920-021-01041-7. PubMed DOI PMC
Haberman Y, et al. Mucosal inflammatory and wound healing gene programs reveal targets for stricturing behavior in pediatric Crohn’s disease. J Crohns Colitis. 2021;15(2):273–286. doi: 10.1093/ecco-jcc/jjaa166. PubMed DOI PMC
Martin JC, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 2019;178(6):1493–1508. doi: 10.1016/j.cell.2019.08.008. PubMed DOI PMC
Kong L, et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity. 2023;56(2):444–458. doi: 10.1016/j.immuni.2023.01.002. PubMed DOI PMC
Smillie CS, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell. 2019;178(3):714–730. doi: 10.1016/j.cell.2019.06.029. PubMed DOI PMC
Friedrich M, et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat Med. 2021;27(11):1970–1981. doi: 10.1038/s41591-021-01520-5. PubMed DOI PMC
Gordon IO, et al. Histopathology scoring systems of stenosis associated with small bowel Crohn’s disease: a systematic review. Gastroenterology. 2020;158(1):137–150. doi: 10.1053/j.gastro.2019.08.033. PubMed DOI PMC
Chen W, et al. Smooth muscle hyperplasia/hypertrophy is the most prominent histological change in Crohn’s fibrostenosing bowel strictures: a semiquantitative analysis by using a novel histological grading scheme. J Crohns Colitis. 2017;11(1):92–104. doi: 10.1093/ecco-jcc/jjw126. PubMed DOI
Jansen K, et al. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP) J Med Chem. 2014;57(7):3053–3074. doi: 10.1021/jm500031w. PubMed DOI
Foroutan M, et al. Single sample scoring of molecular phenotypes. BMC Bioinformatics. 2018;19(1):404. doi: 10.1186/s12859-018-2435-4. PubMed DOI PMC
Aibar S, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–1086. doi: 10.1038/nmeth.4463. PubMed DOI PMC
Ansieau S, et al. TWISTing an embryonic transcription factor into an oncoprotein. Oncogene. 2010;29(22):3173–3184. doi: 10.1038/onc.2010.92. PubMed DOI
Stemmler MP, et al. Non-redundant functions of EMT transcription factors. Nat Cell Biol. 2019;21(1):102–112. doi: 10.1038/s41556-018-0196-y. PubMed DOI
Kanehisa M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(d1):D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
Saul D, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13(1):4827. doi: 10.1038/s41467-022-32552-1. PubMed DOI PMC
Gillespie M, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50(d1):D687–D692. doi: 10.1093/nar/gkab1028. PubMed DOI PMC
Wolf FA, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20(1):59. doi: 10.1186/s13059-019-1663-x. PubMed DOI PMC
Cao J, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502. doi: 10.1038/s41586-019-0969-x. PubMed DOI PMC
Efremova M, et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15(4):1484–1506. doi: 10.1038/s41596-020-0292-x. PubMed DOI
Browaeys R, et al. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2019;17(2):159–162. doi: 10.1038/s41592-019-0667-5. PubMed DOI
Mulder K, et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity. 2021;54(8):1883–1900. doi: 10.1016/j.immuni.2021.07.007. PubMed DOI
Yochum ZA, et al. A first-in-class TWIST1 inhibitor with activity in oncogene-driven lung cancer. Mol Cancer Res. 2017;15(12):1764–1776. doi: 10.1158/1541-7786.MCR-17-0298. PubMed DOI PMC
Nafie E, et al. Harmine inhibits breast cancer cell migration and invasion by inducing the degradation of Twist1. PLoS One. 2021;16(2):e0247652. doi: 10.1371/journal.pone.0247652. PubMed DOI PMC
Smedh K, et al. The endoscopic picture reflects transmural inflammation better than endoscopic biopsy in Crohn’s disease. Eur J Gastroenterol Hepatol. 1996;8(12):1189–1193. doi: 10.1097/00042737-199612000-00011. PubMed DOI
Stzepourginski I, et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci U S A. 2017;114(4):E506–E513. doi: 10.1073/pnas.1620059114. PubMed DOI PMC
Du L, et al. Single cell and lineage tracing studies reveal the impact of CD34+ cells on myocardial fibrosis during heart failure. Stem Cell Res Ther. 2023;14(1):33. doi: 10.1186/s13287-023-03256-0. PubMed DOI PMC
Ning X, et al. Emerging role of Twist1 in fibrotic diseases. J Cell Mol Med. 2018;22(3):1383–1391. doi: 10.1111/jcmm.13465. PubMed DOI PMC
García-Palmero I, et al. Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen α1(VI) Oncogene. 2016;35(40):5224–5236. doi: 10.1038/onc.2016.57. PubMed DOI
Palumbo-Zerr K, et al. Composition of TWIST1 dimers regulates fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2017;76(1):244–251. doi: 10.1136/annrheumdis-2015-208470. PubMed DOI
Yeo SY, et al. A positive feedback loop bi-stably activates fibroblasts. Nat Commun. 2018;9(1):3016. doi: 10.1038/s41467-018-05274-6. PubMed DOI PMC
Yang AT, et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15(4):841–867. doi: 10.1016/j.jcmgh.2022.12.005. PubMed DOI PMC
Tillmanns J, et al. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol. 2015;87:194–203. doi: 10.1016/j.yjmcc.2015.08.016. PubMed DOI
Croft AP, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570(7760):246–251. doi: 10.1038/s41586-019-1263-7. PubMed DOI PMC
Qi J, et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat Commun. 2022;13(1):1742. doi: 10.1038/s41467-022-29366-6. PubMed DOI PMC
Feig C, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–20217. doi: 10.1073/pnas.1320318110. PubMed DOI PMC
Habermann AC, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972. doi: 10.1126/sciadv.aba1972. PubMed DOI PMC
Rurik JG, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375(6576):91–96. doi: 10.1126/science.abm0594. PubMed DOI PMC
Aghajanian H, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573(7774):430–433. doi: 10.1038/s41586-019-1546-z. PubMed DOI PMC
Kimura T, et al. Loss of cells expressing fibroblast activation protein has variable effects in models of TGF-β and chronic bleomycin-induced fibrosis. Am J Physiol Lung Cell Mol Physiol. 2019;317(2):L271–L282. doi: 10.1152/ajplung.00071.2019. PubMed DOI
Schenk M, et al. TREM-1—expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest. 2007;117(10):3097–3106. doi: 10.1172/JCI30602. PubMed DOI PMC
Guilliams M, et al. Establishment and maintenance of the macrophage niche. Immunity. 2020;52(3):434–451. doi: 10.1016/j.immuni.2020.02.015. PubMed DOI
Frucht DM, et al. Stat4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J Immunol. 2000;164(9):4659–4664. doi: 10.4049/jimmunol.164.9.4659. PubMed DOI
Foell D, et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am J Respir Crit Care Med. 2013;187(12):1324–1334. doi: 10.1164/rccm.201209-1602OC. PubMed DOI
Frede S, et al. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J. 2006;396(3):517–527. doi: 10.1042/BJ20051839. PubMed DOI PMC
Gaiani F, et al. Monocytes from infliximab-resistant patients with Crohn’s disease exhibit a disordered cytokine profile. Sci Rep. 2020;10(1):12238. doi: 10.1038/s41598-020-68993-1. PubMed DOI PMC
Mukherjee PK, et al. Stricturing Crohn’s disease single-cell RNA sequencing reveals fibroblast heterogeneity and intercellular interactions. Gastroenterology. 2023;165(5):1180–1196. doi: 10.1053/j.gastro.2023.07.014. PubMed DOI
McGinnis CS, et al. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8(4):329–337. doi: 10.1016/j.cels.2019.03.003. PubMed DOI PMC
Wolock SL, et al. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281–291. doi: 10.1016/j.cels.2018.11.005. PubMed DOI PMC
Germain PL, et al. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res. 2021;10:979. doi: 10.12688/f1000research.73600.1. PubMed DOI PMC
Muskovic W, Powell JE. DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data. Genome Biol. 2021;22(1):329. doi: 10.1186/s13059-021-02547-0. PubMed DOI PMC
Ahlmann-Eltze C, Huber W. glmGamPoi: fitting Gamma-Poisson generalized linear models on single cell count data. Bioinformatics. 2021;36(24):5701–5702. doi: 10.1093/bioinformatics/btaa1009. PubMed DOI PMC
Stuart T, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–1902. doi: 10.1016/j.cell.2019.05.031. PubMed DOI PMC
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20(1):296. doi: 10.1186/s13059-019-1874-1. PubMed DOI PMC
CellTypist. Automated cell type annotation for scRNA-seq datasets. https://www.celltypist.org/ Accessed June 20, 2024.
Elmentaite R, et al. Cells of the human intestinal tract mapped across space and time. Nature. 2021;597(7875):250–255. doi: 10.1038/s41586-021-03852-1. PubMed DOI PMC
Van de Sande B, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15(7):2247–2276. doi: 10.1038/s41596-020-0336-2. PubMed DOI
Yu G, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Wu T, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2021;2(3):100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Liberzon A, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–1740. doi: 10.1093/bioinformatics/btr260. PubMed DOI PMC
Liberzon A, et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC
Nishimura D. BioCarta. https://www.liebertpub.com/doi/abs/10.1089/152791601750294344?journalCode=bsi Accessed June 20, 2024. DOI
Shao X, et al. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 2020;48(d1):D1136–D1144. doi: 10.1093/nar/gkz849. PubMed DOI PMC
Guilliams M, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell. 2022;185(2):379–396. doi: 10.1016/j.cell.2021.12.018. PubMed DOI PMC
Petukhov V, et al. Cell segmentation in imaging-based spatial transcriptomics. Nat Biotechnol. 2022;40(3):345–354. doi: 10.1038/s41587-021-01044-w. PubMed DOI
Stringer C, et al. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18(1):100–106. doi: 10.1038/s41592-020-01018-x. PubMed DOI
Johnson P et al. Isolation of CD 90+ Fibroblast/Myofibroblasts from Human Frozen Gastrointestinal Specimens. J Vis Exp. 2016;2016(107):e53691. doi: 10.3791/53691. PubMed DOI PMC