Intercellular interaction between FAP+ fibroblasts and CD150+ inflammatory monocytes mediates fibrostenosis in Crohn's disease

. 2024 Jul 23 ; 134 (16) : . [epub] 20240723

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39042469

Crohn's disease (CD) is marked by recurring intestinal inflammation and tissue injury, often resulting in fibrostenosis and bowel obstruction, necessitating surgical intervention with high recurrence rates. To elucidate the mechanisms underlying fibrostenosis in CD, we analyzed the transcriptome of cells isolated from the transmural ileum of patients with CD, including a trio of lesions from each patient: non-affected, inflamed, and stenotic ileum samples, and compared them with samples from patients without CD. Our computational analysis revealed that profibrotic signals from a subset of monocyte-derived cells expressing CD150 induced a disease-specific fibroblast population, resulting in chronic inflammation and tissue fibrosis. The transcription factor TWIST1 was identified as a key modulator of fibroblast activation and extracellular matrix (ECM) deposition. Genetic and pharmacological inhibition of TWIST1 prevents fibroblast activation, reducing ECM production and collagen deposition. Our findings suggest that the myeloid-stromal axis may offer a promising therapeutic target to prevent fibrostenosis in CD.

Centre for Inflammation Research University of Edinburgh Edinburgh United Kingdom

Department of Abdominal Surgery University Hospitals Leuven Leuven Belgium

Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic

Department of Biomedical Sciences Humanitas University Milan Italy

Department of Gastroenterology and Hepatology University Hospitals Leuven Leuven Belgium

Department of Gastroenterology Hepatology Leiden University Medical Center Leiden Netherlands

Department of Immunology and Respiratory Research Boehringer Ingelheim Pharmaceuticals Inc Ridgefield Connecticut USA

Department of Microbiology Immunology and Transplantation KU Leuven Leuven Belgium

Department of Pharmaceutical Sciences University of Antwerp Antwerp Belgium

Gastroenterology Research Unit Department of Experimental and Clinical Biomedical Sciences University of Florence Florence Italy

Institute of Hematology and Blood Transfusion Prague Czech Republic

International Clinical Research Center Faculty of Medicine Masaryk University Brno Czech Republic

International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic

Laboratory of Pathology University Hospitals Leuven Leuven Belgium

Laboratory of Translational Cell and Tissue Research Department of Imaging and Pathology KU Leuven Leuven Belgium

Leuven Institute for Single Cell Omics KU Leuven Leuven Belgium

Translational Research Center for Gastrointestinal Disorders Department of Chronic Diseases and Metabolism KU Leuven Leuven Belgium

Zobrazit více v PubMed

Ng SC, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI

Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12(12):720–727. doi: 10.1038/nrgastro.2015.150. PubMed DOI

Kappelman MD, et al. Utilization of healthcare resources by U.S. children and adults with inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(1):62–68. doi: 10.1002/ibd.21371. PubMed DOI PMC

Mowat C, et al. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011;60(5):571–607. doi: 10.1136/gut.2010.224154. PubMed DOI

Carter MJ. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2004;53(suppl 5):V1–V16. doi: 10.1136/gut.2004.043372. PubMed DOI PMC

Frolkis AD, et al. Risk of surgery for inflammatory bowel diseases has decreased over time: a systematic review and meta-analysis of population-based studies. Gastroenterology. 2013;145(5):996–1006. doi: 10.1053/j.gastro.2013.07.041. PubMed DOI

Lee HS, et al. Novel treatments for inflammatory bowel disease. Korean J Intern Med. 2018;33(1):20–27. doi: 10.3904/kjim.2017.393. PubMed DOI PMC

Present DH, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med. 1999;340(18):1398–1405. doi: 10.1056/NEJM199905063401804. PubMed DOI

Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14(5):269–278. doi: 10.1038/nrgastro.2016.208. PubMed DOI

Raine T, Danese S. Breaking through the therapeutic ceiling: what will it take? Gastroenterology. 2022;162(5):1507–1511. doi: 10.1053/j.gastro.2021.09.078. PubMed DOI

Murthy SK, et al. Introduction of anti-TNF therapy has not yielded expected declines in hospitalisation and intestinal resection rates in inflammatory bowel diseases: a population-based interrupted time series study. Gut. 2020;69(2):274–282. doi: 10.1136/gutjnl-2019-318440. PubMed DOI PMC

Van Beelen Granlund B, et al. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn’s disease and ulcerative colitis. PLoS One. 2013;8(2):e56818. doi: 10.1371/journal.pone.0056818. PubMed DOI PMC

Pelia R, et al. Profiling non-coding RNA levels with clinical classifiers in pediatric Crohn’s disease. BMC Med Genomics. 2021;14(1):194. doi: 10.1186/s12920-021-01041-7. PubMed DOI PMC

Haberman Y, et al. Mucosal inflammatory and wound healing gene programs reveal targets for stricturing behavior in pediatric Crohn’s disease. J Crohns Colitis. 2021;15(2):273–286. doi: 10.1093/ecco-jcc/jjaa166. PubMed DOI PMC

Martin JC, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell. 2019;178(6):1493–1508. doi: 10.1016/j.cell.2019.08.008. PubMed DOI PMC

Kong L, et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity. 2023;56(2):444–458. doi: 10.1016/j.immuni.2023.01.002. PubMed DOI PMC

Smillie CS, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell. 2019;178(3):714–730. doi: 10.1016/j.cell.2019.06.029. PubMed DOI PMC

Friedrich M, et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat Med. 2021;27(11):1970–1981. doi: 10.1038/s41591-021-01520-5. PubMed DOI PMC

Gordon IO, et al. Histopathology scoring systems of stenosis associated with small bowel Crohn’s disease: a systematic review. Gastroenterology. 2020;158(1):137–150. doi: 10.1053/j.gastro.2019.08.033. PubMed DOI PMC

Chen W, et al. Smooth muscle hyperplasia/hypertrophy is the most prominent histological change in Crohn’s fibrostenosing bowel strictures: a semiquantitative analysis by using a novel histological grading scheme. J Crohns Colitis. 2017;11(1):92–104. doi: 10.1093/ecco-jcc/jjw126. PubMed DOI

Jansen K, et al. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP) J Med Chem. 2014;57(7):3053–3074. doi: 10.1021/jm500031w. PubMed DOI

Foroutan M, et al. Single sample scoring of molecular phenotypes. BMC Bioinformatics. 2018;19(1):404. doi: 10.1186/s12859-018-2435-4. PubMed DOI PMC

Aibar S, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–1086. doi: 10.1038/nmeth.4463. PubMed DOI PMC

Ansieau S, et al. TWISTing an embryonic transcription factor into an oncoprotein. Oncogene. 2010;29(22):3173–3184. doi: 10.1038/onc.2010.92. PubMed DOI

Stemmler MP, et al. Non-redundant functions of EMT transcription factors. Nat Cell Biol. 2019;21(1):102–112. doi: 10.1038/s41556-018-0196-y. PubMed DOI

Kanehisa M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(d1):D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC

Saul D, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13(1):4827. doi: 10.1038/s41467-022-32552-1. PubMed DOI PMC

Gillespie M, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50(d1):D687–D692. doi: 10.1093/nar/gkab1028. PubMed DOI PMC

Wolf FA, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20(1):59. doi: 10.1186/s13059-019-1663-x. PubMed DOI PMC

Cao J, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502. doi: 10.1038/s41586-019-0969-x. PubMed DOI PMC

Efremova M, et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020;15(4):1484–1506. doi: 10.1038/s41596-020-0292-x. PubMed DOI

Browaeys R, et al. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2019;17(2):159–162. doi: 10.1038/s41592-019-0667-5. PubMed DOI

Mulder K, et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity. 2021;54(8):1883–1900. doi: 10.1016/j.immuni.2021.07.007. PubMed DOI

Yochum ZA, et al. A first-in-class TWIST1 inhibitor with activity in oncogene-driven lung cancer. Mol Cancer Res. 2017;15(12):1764–1776. doi: 10.1158/1541-7786.MCR-17-0298. PubMed DOI PMC

Nafie E, et al. Harmine inhibits breast cancer cell migration and invasion by inducing the degradation of Twist1. PLoS One. 2021;16(2):e0247652. doi: 10.1371/journal.pone.0247652. PubMed DOI PMC

Smedh K, et al. The endoscopic picture reflects transmural inflammation better than endoscopic biopsy in Crohn’s disease. Eur J Gastroenterol Hepatol. 1996;8(12):1189–1193. doi: 10.1097/00042737-199612000-00011. PubMed DOI

Stzepourginski I, et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci U S A. 2017;114(4):E506–E513. doi: 10.1073/pnas.1620059114. PubMed DOI PMC

Du L, et al. Single cell and lineage tracing studies reveal the impact of CD34+ cells on myocardial fibrosis during heart failure. Stem Cell Res Ther. 2023;14(1):33. doi: 10.1186/s13287-023-03256-0. PubMed DOI PMC

Ning X, et al. Emerging role of Twist1 in fibrotic diseases. J Cell Mol Med. 2018;22(3):1383–1391. doi: 10.1111/jcmm.13465. PubMed DOI PMC

García-Palmero I, et al. Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen α1(VI) Oncogene. 2016;35(40):5224–5236. doi: 10.1038/onc.2016.57. PubMed DOI

Palumbo-Zerr K, et al. Composition of TWIST1 dimers regulates fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2017;76(1):244–251. doi: 10.1136/annrheumdis-2015-208470. PubMed DOI

Yeo SY, et al. A positive feedback loop bi-stably activates fibroblasts. Nat Commun. 2018;9(1):3016. doi: 10.1038/s41467-018-05274-6. PubMed DOI PMC

Yang AT, et al. Fibroblast activation protein activates macrophages and promotes parenchymal liver inflammation and fibrosis. Cell Mol Gastroenterol Hepatol. 2023;15(4):841–867. doi: 10.1016/j.jcmgh.2022.12.005. PubMed DOI PMC

Tillmanns J, et al. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. J Mol Cell Cardiol. 2015;87:194–203. doi: 10.1016/j.yjmcc.2015.08.016. PubMed DOI

Croft AP, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570(7760):246–251. doi: 10.1038/s41586-019-1263-7. PubMed DOI PMC

Qi J, et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat Commun. 2022;13(1):1742. doi: 10.1038/s41467-022-29366-6. PubMed DOI PMC

Feig C, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–20217. doi: 10.1073/pnas.1320318110. PubMed DOI PMC

Habermann AC, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972. doi: 10.1126/sciadv.aba1972. PubMed DOI PMC

Rurik JG, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375(6576):91–96. doi: 10.1126/science.abm0594. PubMed DOI PMC

Aghajanian H, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573(7774):430–433. doi: 10.1038/s41586-019-1546-z. PubMed DOI PMC

Kimura T, et al. Loss of cells expressing fibroblast activation protein has variable effects in models of TGF-β and chronic bleomycin-induced fibrosis. Am J Physiol Lung Cell Mol Physiol. 2019;317(2):L271–L282. doi: 10.1152/ajplung.00071.2019. PubMed DOI

Schenk M, et al. TREM-1—expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest. 2007;117(10):3097–3106. doi: 10.1172/JCI30602. PubMed DOI PMC

Guilliams M, et al. Establishment and maintenance of the macrophage niche. Immunity. 2020;52(3):434–451. doi: 10.1016/j.immuni.2020.02.015. PubMed DOI

Frucht DM, et al. Stat4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J Immunol. 2000;164(9):4659–4664. doi: 10.4049/jimmunol.164.9.4659. PubMed DOI

Foell D, et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am J Respir Crit Care Med. 2013;187(12):1324–1334. doi: 10.1164/rccm.201209-1602OC. PubMed DOI

Frede S, et al. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J. 2006;396(3):517–527. doi: 10.1042/BJ20051839. PubMed DOI PMC

Gaiani F, et al. Monocytes from infliximab-resistant patients with Crohn’s disease exhibit a disordered cytokine profile. Sci Rep. 2020;10(1):12238. doi: 10.1038/s41598-020-68993-1. PubMed DOI PMC

Mukherjee PK, et al. Stricturing Crohn’s disease single-cell RNA sequencing reveals fibroblast heterogeneity and intercellular interactions. Gastroenterology. 2023;165(5):1180–1196. doi: 10.1053/j.gastro.2023.07.014. PubMed DOI

McGinnis CS, et al. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8(4):329–337. doi: 10.1016/j.cels.2019.03.003. PubMed DOI PMC

Wolock SL, et al. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281–291. doi: 10.1016/j.cels.2018.11.005. PubMed DOI PMC

Germain PL, et al. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res. 2021;10:979. doi: 10.12688/f1000research.73600.1. PubMed DOI PMC

Muskovic W, Powell JE. DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data. Genome Biol. 2021;22(1):329. doi: 10.1186/s13059-021-02547-0. PubMed DOI PMC

Ahlmann-Eltze C, Huber W. glmGamPoi: fitting Gamma-Poisson generalized linear models on single cell count data. Bioinformatics. 2021;36(24):5701–5702. doi: 10.1093/bioinformatics/btaa1009. PubMed DOI PMC

Stuart T, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–1902. doi: 10.1016/j.cell.2019.05.031. PubMed DOI PMC

Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20(1):296. doi: 10.1186/s13059-019-1874-1. PubMed DOI PMC

CellTypist. Automated cell type annotation for scRNA-seq datasets. https://www.celltypist.org/ Accessed June 20, 2024.

Elmentaite R, et al. Cells of the human intestinal tract mapped across space and time. Nature. 2021;597(7875):250–255. doi: 10.1038/s41586-021-03852-1. PubMed DOI PMC

Van de Sande B, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15(7):2247–2276. doi: 10.1038/s41596-020-0336-2. PubMed DOI

Yu G, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Wu T, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2021;2(3):100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Liberzon A, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–1740. doi: 10.1093/bioinformatics/btr260. PubMed DOI PMC

Liberzon A, et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC

Nishimura D. BioCarta. https://www.liebertpub.com/doi/abs/10.1089/152791601750294344?journalCode=bsi Accessed June 20, 2024. DOI

Shao X, et al. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res. 2020;48(d1):D1136–D1144. doi: 10.1093/nar/gkz849. PubMed DOI PMC

Guilliams M, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell. 2022;185(2):379–396. doi: 10.1016/j.cell.2021.12.018. PubMed DOI PMC

Petukhov V, et al. Cell segmentation in imaging-based spatial transcriptomics. Nat Biotechnol. 2022;40(3):345–354. doi: 10.1038/s41587-021-01044-w. PubMed DOI

Stringer C, et al. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18(1):100–106. doi: 10.1038/s41592-020-01018-x. PubMed DOI

Johnson P et al. Isolation of CD 90+ Fibroblast/Myofibroblasts from Human Frozen Gastrointestinal Specimens. J Vis Exp. 2016;2016(107):e53691. doi: 10.3791/53691. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...