Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells - Implications for Alzheimer's disease
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
39047637
PubMed Central
PMC11321383
DOI
10.1016/j.redox.2024.103272
PII: S2213-2317(24)00250-7
Knihovny.cz E-resources
- Keywords
- Mitochondrial dysfunction, Olfactory mucosa (OM), Oxidative phosphorylation (OXPHOS), RNA sequencing (RNA-Seq), Redox balance, Ultrafine particles (UFP),
- MeSH
- Alzheimer Disease * metabolism etiology pathology chemically induced MeSH
- Olfactory Mucosa * metabolism pathology drug effects MeSH
- Air Pollutants toxicity adverse effects MeSH
- Humans MeSH
- Mitochondria * metabolism drug effects MeSH
- Oxidative Stress drug effects MeSH
- Particulate Matter * adverse effects toxicity MeSH
- Reactive Oxygen Species metabolism MeSH
- Aged MeSH
- Vehicle Emissions toxicity MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Air Pollutants MeSH
- Particulate Matter * MeSH
- Reactive Oxygen Species MeSH
- Vehicle Emissions MeSH
Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 μm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland 70210 Kuopio Finland
Department of Computer Science University of Verona 37134 Verona Italy
Department of Neurology Neuro Centre Kuopio University Hospital 70210 Kuopio Finland
See more in PubMed
Hullmann M., Albrecht C., van Berlo D., Gerlofs-Nijland M.E., Wahle T., Boots A.W., Krutmann J., Cassee F.R., Bayer T.A., Schins R.P.F. Diesel engine exhaust accelerates plaque formation in a mouse model of Alzheimer's disease. Part. Fibre Toxicol. 2017;14:35. doi: 10.1186/s12989-017-0213-5. PubMed DOI PMC
Iaccarino L., La Joie R., Lesman-Segev O.H., Lee E., Hanna L., Allen I.E., Hillner B.E., Siegel B.A., Whitmer R.A., Carrillo M.C., Gatsonis C., Rabinovici G.D. Association between ambient air pollution and amyloid positron emission tomography positivity in older adults with cognitive impairment. JAMA Neurol. 2021;78:197–207. doi: 10.1001/jamaneurol.2020.3962. PubMed DOI PMC
Calderón-Garcidueñas L., Reynoso-Robles R., González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: the culprit of Alzheimer and Parkinson's diseases. Environ. Res. 2019;176 doi: 10.1016/j.envres.2019.108574. PubMed DOI
Tan J., Li N., Wang X., Chen G., Yan L., Wang L., Zhao Y., Li S., Guo Y. Associations of particulate matter with dementia and mild cognitive impairment in China: a multicenter cross-sectional study. Innovation. 2021;2 doi: 10.1016/j.xinn.2021.100147. PubMed DOI PMC
Calderón-Garcidueñas L., Stommel E.W., Rajkumar R.P., Mukherjee P.S., Ayala A. Particulate air pollution and risk of neuropsychiatric outcomes. What we breathe, swallow, and put on our skin matters. Int J Environ Res Public Health. 2021;18 doi: 10.3390/ijerph182111568. PubMed DOI PMC
Letellier N., Gutierrez L.A., Duchesne J., Chen C., Ilango S., Helmer C., Berr C., Mortamais M., Benmarhnia T. Air quality improvement and incident dementia: effects of observed and hypothetical reductions in air pollutant using parametric g-computation. Alzheimer's Dementia. 2022 doi: 10.1002/ALZ.12606. PubMed DOI
World Health Organization WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. https://apps.who.int/iris/handle/10665/345329 PubMed
Gunawan C., Fleming C., Irga P.J., Jien Wong R., Amal R., Torpy F.R., Mojtaba Golzan S., McGrath K.C. Neurodegenerative effects of air pollutant Particles: biological mechanisms implicated for Early-Onset Alzheimer's disease. Environ. Int. 2024;185 doi: 10.1016/j.envint.2024.108512. PubMed DOI
Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., Brayne C., Burns A., Cohen-Mansfield J., Cooper C., Costafreda S.G., Dias A., Fox N., Gitlin L.N., Howard R., Kales H.C., Kivimäki M., Larson E.B., Ogunniyi A., Orgeta V., Ritchie K., Rockwood K., Sampson E.L., Samus Q., Schneider L.S., Selbæk G., Teri L., Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–446. doi: 10.1016/S0140-6736(20)30367-6. PubMed DOI PMC
Vanbrabant K., Debby M., Dam V., Bongaerts E., Vermeiren Yannick, Bové H., Hellings N., Ameloot M., Plusquin M., Peter, De Deyn P., Nawrot T.S. Accumulation of ambient black carbon particles within key memory-related brain regions key points + supplemental content. JAMA Netw. Open. 2024;7 doi: 10.1001/jamanetworkopen.2024.5678. PubMed DOI PMC
Rönkkö T., Timonen H. Overview of sources and characteristics of nanoparticles in urban traffic-influenced areas. J. Alzheim. Dis. 2019;72:15–28. doi: 10.3233/JAD-190170. PubMed DOI PMC
Calderon Garciduenas L., Ayala A. Air pollution, ultrafine particles, and your brain: are combustion nanoparticle emissions and engineered nanoparticles causing preventable fatal neurodegenerative diseases and common neuropsychiatric outcomes? Environ. Sci. Technol. 2022;2022:6847–6856. doi: 10.1021/acs.est.1c04706. PubMed DOI
Park S.J., Lee J., Lee S., Lim S., Noh J., Cho S.Y., Ha J., Kim H., Kim C., Park S., Lee D.Y., Kim E. Exposure of ultrafine particulate matter causes glutathione redox imbalance in the hippocampus: a neurometabolic susceptibility to Alzheimer's pathology. Sci. Total Environ. 2020;718 doi: 10.1016/J.SCITOTENV.2020.137267. PubMed DOI
Kaumbekova S., Torkmahalleh M.A., Umezawa M., Wang Y., Shah D. Effect of carbonaceous ultrafine particles on the structure and oligomerization of Aβ 42 peptide. Environmental Pollution. 2023;323 doi: 10.1016/j.envpol.2023.121273. PubMed DOI
Saveleva L., Vartiainen P., Górová V., Chew S., Belaya I., Konttinen H., Zucchelli M., Korhonen P., Kaartinen E., Kortelainen M., Lamberg H., Sippula O., Malm T., Jalava P.I., Kanninen K.M. Subacute inhalation of ultrafine particulate matter triggers inflammation without altering amyloid beta load in 5xFAD mice. Neurotoxicology. 2022;89:55–66. doi: 10.1016/J.NEURO.2022.01.001. PubMed DOI
Sobolewski M., Conrad K., Marvin E., Eckard M., Goeke C.M., Merrill A.K., Welle K., Jackson B.P., Gelein R., Chalupa D., Oberdörster G., Cory-Slechta D.A. The potential involvement of inhaled iron (Fe) in the neurotoxic effects of ultrafine particulate matter air pollution exposure on brain development in mice. Part. Fibre Toxicol. 2022;19 doi: 10.1186/s12989-022-00496-5. PubMed DOI PMC
Jew K., Herr D., Wong C., Kennell A., Morris-Schaffer K., Oberdörster G., O'Banion M.K., Cory-Slechta D.A., Elder A. Selective memory and behavioral alterations after ambient ultrafine particulate matter exposure in aged 3xTgAD Alzheimer's disease mice. Part. Fibre Toxicol. 2019;16 doi: 10.1186/s12989-019-0323-3. PubMed DOI PMC
Breton C.V., Song A.Y., Xiao J., Kim S.J., Mehta H.H., Wan J., Yen K., Sioutas C., Lurmann F., Xue S., Morgan T.E., Zhang J., Cohen P. Effects of air pollution on mitochondrial function, mitochondrial DNA methylation, and mitochondrial peptide expression. Mitochondrion. 2019;46:22. doi: 10.1016/J.MITO.2019.04.001. PubMed DOI PMC
Johnson J., Mercado-Ayon E., Mercado-Ayon Y., Dong Y.N., Halawani S., Ngaba L., Lynch D.R. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch. Biochem. Biophys. 2021;702 doi: 10.1016/j.abb.2020.108698. PubMed DOI
Zádori D., Veres G., Szalárdy L., Klivényi P., Vécsei L. Alzheimer's disease: recent concepts on the relation of mitochondrial disturbances, excitotoxicity, neuroinflammation, and kynurenines. J. Alzheim. Dis. 2018;62:523–547. doi: 10.3233/JAD-170929. PubMed DOI
Qin G., Wang J., Sang N. Sulfur dioxide inhibits expression of mitochondrial oxidative phosphorylation genes encoded by both nuclear DNA and mitochondrial DNA in rat lungs. Environ. Sci. Pollut. Control Ser. 2017;24:2527–2534. doi: 10.1007/s11356-016-7859-7. PubMed DOI
Ku T., Ji X., Zhang Y., Li G., Sang N. PM2.5, SO2 and NO2 co-exposure impairs neurobehavior and induces mitochondrial injuries in the mouse brain. Chemosphere. 2016;163:27–34. doi: 10.1016/J.CHEMOSPHERE.2016.08.009. PubMed DOI
Hu R., Xie X.Y., Xu S.K., Wang Y.N., Jiang M., Wen L.R., Lai W., Guan L. PM 2.5 exposure elicits oxidative stress responses and mitochondrial apoptosis pathway activation in HaCaT keratinocytes. Chin Med J (Engl) 2017;130:2205–2214. doi: 10.4103/0366-6999.212942. PubMed DOI PMC
Chew S., Lampinen R., Saveleva L., Korhonen P., Mikhailov N., Grubman A., Grubman A., Grubman A., Polo J.M., Polo J.M., Polo J.M., Wilson T., Komppula M., Rönkkö T., Gu C., Mackay-Sim A., Malm T., White A.R., Jalava P., Kanninen K.M. Urban air particulate matter induces mitochondrial dysfunction in human olfactory mucosal cells. Part. Fibre Toxicol. 2020;17 doi: 10.1186/s12989-020-00352-4. PubMed DOI PMC
Kanninen K.M., Lampinen R., Rantanen L.M., Odendaal L., Jalava P., Chew S., White A.R. Olfactory cell cultures to investigate health effects of air pollution exposure: implications for neurodegeneration. Neurochem. Int. 2020;136 doi: 10.1016/j.neuint.2020.104729. PubMed DOI
Gao R., Ku T., Ji X., Zhang Y., Li G., Sang N. Abnormal energy metabolism and tau phosphorylation in the brains of middle-aged mice in response to atmospheric PM2.5 exposure. J. Environ. Sci. (China) 2017;62:145–153. doi: 10.1016/j.jes.2017.06.037. PubMed DOI
Yan W., Ku T., Yue H., Li G., Sang N. NO2 inhalation causes tauopathy by disturbing the insulin signaling pathway. Chemosphere. 2016;165:248–256. doi: 10.1016/j.chemosphere.2016.09.063. PubMed DOI
Maher B.A., Ahmed I.A.M., Karloukovski V., MacLaren D.A., Foulds P.G., Allsop D., Mann D.M.A., Torres-Jardón R., Calderon-Garciduenas L. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A. 2016;113:10797–10801. doi: 10.1073/pnas.1605941113. PubMed DOI PMC
Liang C., Jiang Y., Zhang T., Ji Y., Zhang Y., Sun Y., Li S., Qi Y., Wang Y., Cai Y., Lai T., Cui L. Atmospheric particulate matter impairs cognition by modulating synaptic function via the nose-to-brain route. Sci. Total Environ. 2023;857 doi: 10.1016/j.scitotenv.2022.159600. PubMed DOI
Attems J., Walker L., Jellinger K.A. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014;127:459–475. doi: 10.1007/s00401-014-1261-7. PubMed DOI
Doty R.L. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol. 2017;16:478–488. www.thelancet.com/neurology PubMed
Dan X., Wechter N., Gray S., Mohanty J.G., Croteau D.L., Bohr V.A. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res. Rev. 2021;70 doi: 10.1016/j.arr.2021.101416. PubMed DOI PMC
Lampinen R., Fazaludeen M.F., Avesani S., Örd T., Penttilä E., Lehtola J.M., Saari T., Hannonen S., Saveleva L., Kaartinen E., Acosta F.F., Cruz-Haces M., Löppönen H., Mackay-Sim A., Kaikkonen M.U., Koivisto A.M., Malm T., White A.R., Giugno R., Chew S., Kanninen K.M. Single-cell RNA-seq analysis of olfactory mucosal cells of Alzheimer's disease patients. Cells. 2022;11:676. doi: 10.3390/CELLS11040676. PubMed DOI PMC
Rantanen L.M., Bitar M., Lampinen R., Stewart R., Quek H., Oikari L.E., Cuni Lopez C., Sutharsan R., Thillaiyampalam G., Iqbal J., Russell D., Penttilä E., Löppönen H., Lehtola J.M., Saari T., Hannonen S., Koivisto A.M., Haupt L.M., Mackay-Sim A., Cristino A.S., Kanninen K.M., White A.R. An Alzheimer's disease patient-derived olfactory stem cell model identifies gene expression changes associated with cognition. Cells. 2022;11 doi: 10.3390/cells11203258. PubMed DOI PMC
Lampinen R., Górová V., Avesani S., Liddell J.R., Penttilä E., Závodná T., Krejčík Z., Lehtola J.M., Saari T., Kalapudas J., Hannonen S., Löppönen H., Topinka J., Koivisto A.M., White A.R., Giugno R., Kanninen K.M. Biometal dyshomeostasis in olfactory mucosa of Alzheimer's disease patients. Int. J. Mol. Sci. 2022;23 doi: 10.3390/IJMS23084123/S1. PubMed DOI PMC
Mussalo L., Avesani S., Shahbaz M.A., Závodná T., Saveleva L., Järvinen A., Lampinen R., Belaya I., Krejčík Z., Ivanova M., Hakkarainen H., Kalapudas J., Penttilä E., Löppönen H., Koivisto A.M., Malm T., Topinka J., Giugno R., Aakko-Saksa P., Chew S., Rönkkö T., Jalava P., Kanninen K.M. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. Sci. Total Environ. 2023;905 doi: 10.1016/j.scitotenv.2023.167038. PubMed DOI
Cassee F., Morawska L., Peters A., Wierzbicka A., Buonanno G., Cyrys J., Schnelle-Kreis J., Kowalski M., Riediker M., Birmili W., Querol X., Yildirim A., Elder A., Yu I.J., Ovrevik J., Hougaard K., Loft S., Schmid O., Stoeger T., Lucht S. A report prepared by the ‘Thinking outside the box’ team; 2019. Ambient Ultrafine Particles: Evidence for Policy Makers.
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/BIOINFORMATICS/BTU170. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/BIOINFORMATICS/BTS635. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/BIOINFORMATICS/BTT656. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15 doi: 10.1186/S13059-014-0550-8. PubMed DOI PMC
Krämer A., Green J., Pollard J., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/BIOINFORMATICS/BTT703. PubMed DOI PMC
QIAGEN Inc Ingenuity pathway analysis | QIAGEN digital insights. 2024. https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
Lennicke C., Cochemé H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81:3691–3707. doi: 10.1016/j.molcel.2021.08.018. PubMed DOI
Chang C.-Y., You R., Armstrong D., Bandi A., Cheng Y.-T., Burkhardt P.M., Becerra-Dominguez L., Madison M.C., Tung H.-Y., Zeng Z., Wu Y., Song L., Phillips P.E., Porter P., Knight J.M., Putluri N., Yuan X., Marcano D.C., Mchugh E.A., Tour J.M., Catic A., Maneix L., Burt B.M., Lee H.-S., Corry D.B., Kheradmand F. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. Sci. Adv. 2022;8 PubMed PMC
Letts J.A., Sazanov L.A. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 2017;24:800–808. doi: 10.1038/nsmb.3460. PubMed DOI
Zheng L., Dong H., Zhao W., Zhang X., Duan X., Zhang H., Liu S., Sui G. An Air−Liquid interface organ-level lung microfluidics platform for analysis on molecular mechanisms of cytotoxicity induced by cancer-causing fine particles. ACS Sens. 2019;4:907–917. doi: 10.1021/acssensors.8b01672. PubMed DOI
Kim M.J., Park J., Kim J., Kim J.-Y., An M.-J., Shin G.-S., Lee H.-M., Kim C.-H., Kim J.-W. Article transcriptome analysis reveals HgCl 2 induces apoptotic cell death in human lung carcinoma H1299 cells through caspase-3-independent pathway. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms22042006. PubMed DOI PMC
Chang E.M., Chao C.C., Wang M.T., Hsu C.L., Chen P.C. PM2.5 promotes pulmonary fibrosis by mitochondrial dysfunction. Environ. Toxicol. 2023;38:1905–1913. doi: 10.1002/tox.23817. PubMed DOI
Daiber A., Kuntic M., Hahad O., Delogu L.G., Rohrbach S., Di Lisa F., Schulz R., Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress – implications for cardiovascular and neurodegenerative diseases. Arch. Biochem. Biophys. 2020;696 doi: 10.1016/j.abb.2020.108662. PubMed DOI
Sun K.A., Li Y., Meliton A.Y., Woods P.S., Kimmig L.M., Cetin-Atalay R., Hamanaka R.B., Mutlu G.M. Endogenous itaconate is not required for particulate matter-induced NRF2 expression or inflammatory response. Elife. 2020;9 doi: 10.7554/ELIFE.54877. PubMed DOI PMC
Cheng J., Nanayakkara G., Shao Y., Cueto R., Wang L., Yang W.Y., Tian Y., Wang H., Yang X. Mitochondrial proton leak plays a critical role in pathogenesis of cardiovascular diseases HHS public access. Adv. Exp. Med. Biol. 2017;982:359–370. doi: 10.1007/978-3-319-55330-6_20. PubMed DOI PMC
Lyu Y., Yang J., Cheng L., Li Z., Zheng J. Benzo(a)pyrene-induced mitochondrial respiration and glycolysis disturbance in human neuroblastoma cells. J. Toxicol. Sci. 2023;48:87–97. PubMed
Brischigliaro M., Zeviani M. Cytochrome c oxidase deficiency. Biochim. Biophys. Acta Bioenerg. 2021;1862 doi: 10.1016/J.BBABIO.2020.148335. PubMed DOI
Forgacs A.L., Burgoon L.D., Lynn S.G., LaPres J.J., Zacharewski T. Effects of TCDD on the expression of nuclear encoded mitochondrial genes. Toxicol. Appl. Pharmacol. 2010;246:58. doi: 10.1016/J.TAAP.2010.04.006. PubMed DOI PMC
Vogel C.F.A., Van Winkle L.S., Esser C., Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020;34 doi: 10.1016/J.REDOX.2020.101530. PubMed DOI PMC
Zhao R.Z., Jiang S., Zhang L., Bin Yu Z. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med. 2019;44:3. doi: 10.3892/IJMM.2019.4188. PubMed DOI PMC
Nesci S. Proton leak through the UCPs and ANT carriers and beyond: a breath for the electron transport chain. Biochimie. 2023;214:77–85. doi: 10.1016/j.biochi.2023.06.008. PubMed DOI
Johansen J.L., Esbaugh A.J. Oil-induced responses of cardiac and red muscle mitochondria in red drum (Sciaenops ocellatus) ☆, Comparative Biochemistry and Physiology. Part. Char. 2019;219:35–41. doi: 10.1016/j.cbpc.2019.02.003. PubMed DOI
Kirby A.R., Galli G., Crossley J., Sweet L.E., Crossley Ii D.A., Roberts A.P. Gill filament permeabilization: a novel approach to assess mitochondrial function in sheepshead minnows (Cyprinodon variegatus) following anthraquinone exposure, Comparative Biochemistry and Physiology. Part. Char. 2019;230 doi: 10.1016/j.cbpc.2019.108699. PubMed DOI
Kozal J.S., Jayasundara N., Massarsky A., Lindberg C.D., Oliveri A.N., Cooper E.M., Levin E.D., Meyer J.N., Giulio R.T.D. Mitochondrial dysfunction and oxidative stress contribute to cross-generational toxicity of benzo(a)pyrene in Danio rerio. Aquat. Toxicol. 2023;263 doi: 10.1016/j.aquatox.2023.106658. PubMed DOI PMC
Cáceres L., Paz M.L., Garcés M., Calabró V., Magnani N.D., Martinefski M., Adami P.V.M., Caltana L., Tasat D., Morelli L., Tripodi V., Valacchi G., Alvarez S., González Maglio D., Marchini T., Evelson P. NADPH oxidase and mitochondria are relevant sources of superoxide anion in the oxinflammatory response of macrophages exposed to airborne particulate matter. Ecotoxicol. Environ. Saf. 2020;205 doi: 10.1016/j.ecoenv.2020.111186. PubMed DOI
Desler C., Hansen T.L., Frederiksen J.B., Marcker M.L., Singh K.K., Juel Rasmussen L. Is there a link between mitochondrial reserve respiratory capacity and aging? J Aging Res. 2012;2012 doi: 10.1155/2012/192503. PubMed DOI PMC
Xie N., Zhang L., Gao W., Huang C., Huber P.E., Zhou X., Li C., Shen G., Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Targeted Ther. 2020;5 doi: 10.1038/s41392-020-00311-7. PubMed DOI PMC
Lautrup S., Sinclair D.A., Mattson M.P., Fang E.F. NAD+ in brain aging and neurodegenerative disorders. Cell Metabol. 2019;30:630–655. doi: 10.1016/j.cmet.2019.09.001. PubMed DOI PMC
Fang E.F., Hou Y., Palikaras K., Adriaanse B.A., Kerr J.S., Yang B., Lautrup S., Hasan-Olive M., Caponio D., Dan X., Rocktäschel P., Croteau D.L., Akbari M., Greig N.H., Fladby T., Nilsen H., Cader M.Z., Mattson M.P., Tavernarakis N., Bohr V.A., Performed X.D. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease IHC, and ELISA experiments HHS Public Access. Nat. Neurosci. 2019;22:401–412. doi: 10.1038/s41593-018-0332-9. PubMed DOI PMC
Venkateswaran A., Sekhar K.R., Levic D.S., Melville D.B., Clark T.A., Rybski W.M., Walsh A.J., Skala M.C., Crooks P.A., Knapik E.W., Freeman M.L. The NADH oxidase ENOX1, a critical mediator of endothelial cell radiosensitization, is crucial for vascular development. Cancer Res. 2014;74:38. doi: 10.1158/0008-5472.CAN-13-1981. PubMed DOI PMC
Gao M., Cui N., Liu nan, Wang X. Inhibition of mitochondrial complex I leading to NAD+/NADH imbalance in type 2 diabetic patients who developed late stent thrombosis: evidence from an integrative analysis of platelet bioenergetics and metabolomics. Redox Biol. 2022;57 doi: 10.1016/j.redox.2022.102507. PubMed DOI PMC
Zhang R., Chen S., Wang Z., Ye L., Jiang Y., Li M., Jiang X., Peng H., Guo Z., Chen L., Zhang R., Niu Y., Aschner M., Li D., Chen W. Assessing the effects of nicotinamide mononucleotide supplementation on pulmonary inflammation in male mice subchronically exposed to ambient particulate matter. Environ. Health Perspect. 2023;131 doi: 10.1289/EHP12259. PubMed DOI PMC
Jang S., Kim E.W., Zhang Y., Lee J., Cho S.Y., Ha J., Kim H., Kim E. Particulate matter increases beta-amyloid and activated glial cells in hippocampal tissues of transgenic Alzheimer's mouse: involvement of PARP-1. Biochem. Biophys. Res. Commun. 2018;500:333–338. doi: 10.1016/j.bbrc.2018.04.068. PubMed DOI
Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018;14:450. doi: 10.1016/J.REDOX.2017.10.014. PubMed DOI PMC
Murphy M.P., Bayir H., Belousov V., Chang C.J., Davies K.J.A., Davies M.J., Dick T.P., Finkel T., Forman H.J., Janssen-Heininger Y., Gems D., Kagan V.E., Kalyanaraman B., Larsson N.G., Milne G.L., Nyström T., Poulsen H.E., Radi R., Van Remmen H., Schumacker P.T., Thornalley P.J., Toyokuni S., Winterbourn C.C., Yin H., Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022;4:651–662. doi: 10.1038/s42255-022-00591-z. PubMed DOI PMC
Botto L., Bulbarelli A., Lonati E., Cazzaniga E., Tassotti M., Mena P., Del Rio D., Palestini P. Study of the antioxidant effects of coffee phenolic metabolites on C6 glioma cells exposed to diesel exhaust particles. Antioxidants. 2021;10 doi: 10.3390/antiox10081169. PubMed DOI PMC
Kumar R., Singothu S., Bala Singh S., Bhandari V. Uncoupling proteins as a therapeutic target for the development of new era drugs against neurodegenerative disorder. Biomed. Pharmacother. 2022;147 doi: 10.1016/j.biopha.2022.112656. PubMed DOI
Wang Y., Zhang M., Li Z., Yue J., Xu M., Zhang Y., Yung K.K.L., Li R. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere. 2019;218:577–588. doi: 10.1016/j.chemosphere.2018.11.149. PubMed DOI
Iskusnykh I.Y., Zakharova A.A., Pathak D. Glutathione in brain disorders and aging. Molecules. 2022;27 doi: 10.3390/molecules27010324. PubMed DOI PMC
Song T., Song X., Zhu C., Patrick R., Skurla M., Santangelo I., Green M., Harper D., Ren B., Forester B.P., Öngür D., Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 2021;72 doi: 10.1016/J.ARR.2021.101503. PubMed DOI PMC
Shahbaz M.A., Kuivanen S., Lampinen R., Mussalo L., Hron T., Závodná T., Ojha R., Krejčík Z., Saveleva L., Tahir N.A., Kalapudas J., Koivisto A.M., Penttilä E., Löppönen H., Singh P., Topinka J., Vapalahti O., Chew S., Balistreri G., Kanninen K.M. Human-derived air–liquid interface cultures decipher Alzheimer's disease–SARS-CoV-2 crosstalk in the olfactory mucosa. J. Neuroinflammation. 2023;20:1–23. PubMed PMC
Hakkarainen H., Järvinen A., Lepistö T., Salo L., Kuittinen N., Laakkonen E., Yang M., Martikainen M.V., Saarikoski S., Aurela M., Barreira L., Teinilä K., Ihalainen M., Aakko-Saksa P., Timonen H., Rönkkö T., Jalava P. Toxicity of exhaust emissions from high aromatic and non-aromatic diesel fuels using in vitro ALI exposure system. Sci. Total Environ. 2023;890 doi: 10.1016/J.SCITOTENV.2023.164215. PubMed DOI
Vaupel P., Multhoff G., Bennet L., Chan J., Vaupel P., Multhoff G., Physiol J. Revisiting the Warburg effect: historical dogma versus current understanding. J. Physiol. 2021;599:1745–1757. doi: 10.1113/JP278810. PubMed DOI