• This record comes from PubMed

Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells - Implications for Alzheimer's disease

. 2024 Sep ; 75 () : 103272. [epub] 20240719

Language English Country Netherlands Media print-electronic

Document type Journal Article

Links

PubMed 39047637
PubMed Central PMC11321383
DOI 10.1016/j.redox.2024.103272
PII: S2213-2317(24)00250-7
Knihovny.cz E-resources

Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 μm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.

See more in PubMed

Hullmann M., Albrecht C., van Berlo D., Gerlofs-Nijland M.E., Wahle T., Boots A.W., Krutmann J., Cassee F.R., Bayer T.A., Schins R.P.F. Diesel engine exhaust accelerates plaque formation in a mouse model of Alzheimer's disease. Part. Fibre Toxicol. 2017;14:35. doi: 10.1186/s12989-017-0213-5. PubMed DOI PMC

Iaccarino L., La Joie R., Lesman-Segev O.H., Lee E., Hanna L., Allen I.E., Hillner B.E., Siegel B.A., Whitmer R.A., Carrillo M.C., Gatsonis C., Rabinovici G.D. Association between ambient air pollution and amyloid positron emission tomography positivity in older adults with cognitive impairment. JAMA Neurol. 2021;78:197–207. doi: 10.1001/jamaneurol.2020.3962. PubMed DOI PMC

Calderón-Garcidueñas L., Reynoso-Robles R., González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: the culprit of Alzheimer and Parkinson's diseases. Environ. Res. 2019;176 doi: 10.1016/j.envres.2019.108574. PubMed DOI

Tan J., Li N., Wang X., Chen G., Yan L., Wang L., Zhao Y., Li S., Guo Y. Associations of particulate matter with dementia and mild cognitive impairment in China: a multicenter cross-sectional study. Innovation. 2021;2 doi: 10.1016/j.xinn.2021.100147. PubMed DOI PMC

Calderón-Garcidueñas L., Stommel E.W., Rajkumar R.P., Mukherjee P.S., Ayala A. Particulate air pollution and risk of neuropsychiatric outcomes. What we breathe, swallow, and put on our skin matters. Int J Environ Res Public Health. 2021;18 doi: 10.3390/ijerph182111568. PubMed DOI PMC

Letellier N., Gutierrez L.A., Duchesne J., Chen C., Ilango S., Helmer C., Berr C., Mortamais M., Benmarhnia T. Air quality improvement and incident dementia: effects of observed and hypothetical reductions in air pollutant using parametric g-computation. Alzheimer's Dementia. 2022 doi: 10.1002/ALZ.12606. PubMed DOI

World Health Organization WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. https://apps.who.int/iris/handle/10665/345329 PubMed

Gunawan C., Fleming C., Irga P.J., Jien Wong R., Amal R., Torpy F.R., Mojtaba Golzan S., McGrath K.C. Neurodegenerative effects of air pollutant Particles: biological mechanisms implicated for Early-Onset Alzheimer's disease. Environ. Int. 2024;185 doi: 10.1016/j.envint.2024.108512. PubMed DOI

Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., Brayne C., Burns A., Cohen-Mansfield J., Cooper C., Costafreda S.G., Dias A., Fox N., Gitlin L.N., Howard R., Kales H.C., Kivimäki M., Larson E.B., Ogunniyi A., Orgeta V., Ritchie K., Rockwood K., Sampson E.L., Samus Q., Schneider L.S., Selbæk G., Teri L., Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–446. doi: 10.1016/S0140-6736(20)30367-6. PubMed DOI PMC

Vanbrabant K., Debby M., Dam V., Bongaerts E., Vermeiren Yannick, Bové H., Hellings N., Ameloot M., Plusquin M., Peter, De Deyn P., Nawrot T.S. Accumulation of ambient black carbon particles within key memory-related brain regions key points + supplemental content. JAMA Netw. Open. 2024;7 doi: 10.1001/jamanetworkopen.2024.5678. PubMed DOI PMC

Rönkkö T., Timonen H. Overview of sources and characteristics of nanoparticles in urban traffic-influenced areas. J. Alzheim. Dis. 2019;72:15–28. doi: 10.3233/JAD-190170. PubMed DOI PMC

Calderon Garciduenas L., Ayala A. Air pollution, ultrafine particles, and your brain: are combustion nanoparticle emissions and engineered nanoparticles causing preventable fatal neurodegenerative diseases and common neuropsychiatric outcomes? Environ. Sci. Technol. 2022;2022:6847–6856. doi: 10.1021/acs.est.1c04706. PubMed DOI

Park S.J., Lee J., Lee S., Lim S., Noh J., Cho S.Y., Ha J., Kim H., Kim C., Park S., Lee D.Y., Kim E. Exposure of ultrafine particulate matter causes glutathione redox imbalance in the hippocampus: a neurometabolic susceptibility to Alzheimer's pathology. Sci. Total Environ. 2020;718 doi: 10.1016/J.SCITOTENV.2020.137267. PubMed DOI

Kaumbekova S., Torkmahalleh M.A., Umezawa M., Wang Y., Shah D. Effect of carbonaceous ultrafine particles on the structure and oligomerization of Aβ 42 peptide. Environmental Pollution. 2023;323 doi: 10.1016/j.envpol.2023.121273. PubMed DOI

Saveleva L., Vartiainen P., Górová V., Chew S., Belaya I., Konttinen H., Zucchelli M., Korhonen P., Kaartinen E., Kortelainen M., Lamberg H., Sippula O., Malm T., Jalava P.I., Kanninen K.M. Subacute inhalation of ultrafine particulate matter triggers inflammation without altering amyloid beta load in 5xFAD mice. Neurotoxicology. 2022;89:55–66. doi: 10.1016/J.NEURO.2022.01.001. PubMed DOI

Sobolewski M., Conrad K., Marvin E., Eckard M., Goeke C.M., Merrill A.K., Welle K., Jackson B.P., Gelein R., Chalupa D., Oberdörster G., Cory-Slechta D.A. The potential involvement of inhaled iron (Fe) in the neurotoxic effects of ultrafine particulate matter air pollution exposure on brain development in mice. Part. Fibre Toxicol. 2022;19 doi: 10.1186/s12989-022-00496-5. PubMed DOI PMC

Jew K., Herr D., Wong C., Kennell A., Morris-Schaffer K., Oberdörster G., O'Banion M.K., Cory-Slechta D.A., Elder A. Selective memory and behavioral alterations after ambient ultrafine particulate matter exposure in aged 3xTgAD Alzheimer's disease mice. Part. Fibre Toxicol. 2019;16 doi: 10.1186/s12989-019-0323-3. PubMed DOI PMC

Breton C.V., Song A.Y., Xiao J., Kim S.J., Mehta H.H., Wan J., Yen K., Sioutas C., Lurmann F., Xue S., Morgan T.E., Zhang J., Cohen P. Effects of air pollution on mitochondrial function, mitochondrial DNA methylation, and mitochondrial peptide expression. Mitochondrion. 2019;46:22. doi: 10.1016/J.MITO.2019.04.001. PubMed DOI PMC

Johnson J., Mercado-Ayon E., Mercado-Ayon Y., Dong Y.N., Halawani S., Ngaba L., Lynch D.R. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch. Biochem. Biophys. 2021;702 doi: 10.1016/j.abb.2020.108698. PubMed DOI

Zádori D., Veres G., Szalárdy L., Klivényi P., Vécsei L. Alzheimer's disease: recent concepts on the relation of mitochondrial disturbances, excitotoxicity, neuroinflammation, and kynurenines. J. Alzheim. Dis. 2018;62:523–547. doi: 10.3233/JAD-170929. PubMed DOI

Qin G., Wang J., Sang N. Sulfur dioxide inhibits expression of mitochondrial oxidative phosphorylation genes encoded by both nuclear DNA and mitochondrial DNA in rat lungs. Environ. Sci. Pollut. Control Ser. 2017;24:2527–2534. doi: 10.1007/s11356-016-7859-7. PubMed DOI

Ku T., Ji X., Zhang Y., Li G., Sang N. PM2.5, SO2 and NO2 co-exposure impairs neurobehavior and induces mitochondrial injuries in the mouse brain. Chemosphere. 2016;163:27–34. doi: 10.1016/J.CHEMOSPHERE.2016.08.009. PubMed DOI

Hu R., Xie X.Y., Xu S.K., Wang Y.N., Jiang M., Wen L.R., Lai W., Guan L. PM 2.5 exposure elicits oxidative stress responses and mitochondrial apoptosis pathway activation in HaCaT keratinocytes. Chin Med J (Engl) 2017;130:2205–2214. doi: 10.4103/0366-6999.212942. PubMed DOI PMC

Chew S., Lampinen R., Saveleva L., Korhonen P., Mikhailov N., Grubman A., Grubman A., Grubman A., Polo J.M., Polo J.M., Polo J.M., Wilson T., Komppula M., Rönkkö T., Gu C., Mackay-Sim A., Malm T., White A.R., Jalava P., Kanninen K.M. Urban air particulate matter induces mitochondrial dysfunction in human olfactory mucosal cells. Part. Fibre Toxicol. 2020;17 doi: 10.1186/s12989-020-00352-4. PubMed DOI PMC

Kanninen K.M., Lampinen R., Rantanen L.M., Odendaal L., Jalava P., Chew S., White A.R. Olfactory cell cultures to investigate health effects of air pollution exposure: implications for neurodegeneration. Neurochem. Int. 2020;136 doi: 10.1016/j.neuint.2020.104729. PubMed DOI

Gao R., Ku T., Ji X., Zhang Y., Li G., Sang N. Abnormal energy metabolism and tau phosphorylation in the brains of middle-aged mice in response to atmospheric PM2.5 exposure. J. Environ. Sci. (China) 2017;62:145–153. doi: 10.1016/j.jes.2017.06.037. PubMed DOI

Yan W., Ku T., Yue H., Li G., Sang N. NO2 inhalation causes tauopathy by disturbing the insulin signaling pathway. Chemosphere. 2016;165:248–256. doi: 10.1016/j.chemosphere.2016.09.063. PubMed DOI

Maher B.A., Ahmed I.A.M., Karloukovski V., MacLaren D.A., Foulds P.G., Allsop D., Mann D.M.A., Torres-Jardón R., Calderon-Garciduenas L. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A. 2016;113:10797–10801. doi: 10.1073/pnas.1605941113. PubMed DOI PMC

Liang C., Jiang Y., Zhang T., Ji Y., Zhang Y., Sun Y., Li S., Qi Y., Wang Y., Cai Y., Lai T., Cui L. Atmospheric particulate matter impairs cognition by modulating synaptic function via the nose-to-brain route. Sci. Total Environ. 2023;857 doi: 10.1016/j.scitotenv.2022.159600. PubMed DOI

Attems J., Walker L., Jellinger K.A. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014;127:459–475. doi: 10.1007/s00401-014-1261-7. PubMed DOI

Doty R.L. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol. 2017;16:478–488. www.thelancet.com/neurology PubMed

Dan X., Wechter N., Gray S., Mohanty J.G., Croteau D.L., Bohr V.A. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res. Rev. 2021;70 doi: 10.1016/j.arr.2021.101416. PubMed DOI PMC

Lampinen R., Fazaludeen M.F., Avesani S., Örd T., Penttilä E., Lehtola J.M., Saari T., Hannonen S., Saveleva L., Kaartinen E., Acosta F.F., Cruz-Haces M., Löppönen H., Mackay-Sim A., Kaikkonen M.U., Koivisto A.M., Malm T., White A.R., Giugno R., Chew S., Kanninen K.M. Single-cell RNA-seq analysis of olfactory mucosal cells of Alzheimer's disease patients. Cells. 2022;11:676. doi: 10.3390/CELLS11040676. PubMed DOI PMC

Rantanen L.M., Bitar M., Lampinen R., Stewart R., Quek H., Oikari L.E., Cuni Lopez C., Sutharsan R., Thillaiyampalam G., Iqbal J., Russell D., Penttilä E., Löppönen H., Lehtola J.M., Saari T., Hannonen S., Koivisto A.M., Haupt L.M., Mackay-Sim A., Cristino A.S., Kanninen K.M., White A.R. An Alzheimer's disease patient-derived olfactory stem cell model identifies gene expression changes associated with cognition. Cells. 2022;11 doi: 10.3390/cells11203258. PubMed DOI PMC

Lampinen R., Górová V., Avesani S., Liddell J.R., Penttilä E., Závodná T., Krejčík Z., Lehtola J.M., Saari T., Kalapudas J., Hannonen S., Löppönen H., Topinka J., Koivisto A.M., White A.R., Giugno R., Kanninen K.M. Biometal dyshomeostasis in olfactory mucosa of Alzheimer's disease patients. Int. J. Mol. Sci. 2022;23 doi: 10.3390/IJMS23084123/S1. PubMed DOI PMC

Mussalo L., Avesani S., Shahbaz M.A., Závodná T., Saveleva L., Järvinen A., Lampinen R., Belaya I., Krejčík Z., Ivanova M., Hakkarainen H., Kalapudas J., Penttilä E., Löppönen H., Koivisto A.M., Malm T., Topinka J., Giugno R., Aakko-Saksa P., Chew S., Rönkkö T., Jalava P., Kanninen K.M. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. Sci. Total Environ. 2023;905 doi: 10.1016/j.scitotenv.2023.167038. PubMed DOI

Cassee F., Morawska L., Peters A., Wierzbicka A., Buonanno G., Cyrys J., Schnelle-Kreis J., Kowalski M., Riediker M., Birmili W., Querol X., Yildirim A., Elder A., Yu I.J., Ovrevik J., Hougaard K., Loft S., Schmid O., Stoeger T., Lucht S. A report prepared by the ‘Thinking outside the box’ team; 2019. Ambient Ultrafine Particles: Evidence for Policy Makers.

Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/BIOINFORMATICS/BTU170. PubMed DOI PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/BIOINFORMATICS/BTS635. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/BIOINFORMATICS/BTT656. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15 doi: 10.1186/S13059-014-0550-8. PubMed DOI PMC

Krämer A., Green J., Pollard J., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/BIOINFORMATICS/BTT703. PubMed DOI PMC

QIAGEN Inc Ingenuity pathway analysis | QIAGEN digital insights. 2024. https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/

Lennicke C., Cochemé H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81:3691–3707. doi: 10.1016/j.molcel.2021.08.018. PubMed DOI

Chang C.-Y., You R., Armstrong D., Bandi A., Cheng Y.-T., Burkhardt P.M., Becerra-Dominguez L., Madison M.C., Tung H.-Y., Zeng Z., Wu Y., Song L., Phillips P.E., Porter P., Knight J.M., Putluri N., Yuan X., Marcano D.C., Mchugh E.A., Tour J.M., Catic A., Maneix L., Burt B.M., Lee H.-S., Corry D.B., Kheradmand F. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. Sci. Adv. 2022;8 PubMed PMC

Letts J.A., Sazanov L.A. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 2017;24:800–808. doi: 10.1038/nsmb.3460. PubMed DOI

Zheng L., Dong H., Zhao W., Zhang X., Duan X., Zhang H., Liu S., Sui G. An Air−Liquid interface organ-level lung microfluidics platform for analysis on molecular mechanisms of cytotoxicity induced by cancer-causing fine particles. ACS Sens. 2019;4:907–917. doi: 10.1021/acssensors.8b01672. PubMed DOI

Kim M.J., Park J., Kim J., Kim J.-Y., An M.-J., Shin G.-S., Lee H.-M., Kim C.-H., Kim J.-W. Article transcriptome analysis reveals HgCl 2 induces apoptotic cell death in human lung carcinoma H1299 cells through caspase-3-independent pathway. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms22042006. PubMed DOI PMC

Chang E.M., Chao C.C., Wang M.T., Hsu C.L., Chen P.C. PM2.5 promotes pulmonary fibrosis by mitochondrial dysfunction. Environ. Toxicol. 2023;38:1905–1913. doi: 10.1002/tox.23817. PubMed DOI

Daiber A., Kuntic M., Hahad O., Delogu L.G., Rohrbach S., Di Lisa F., Schulz R., Münzel T. Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress – implications for cardiovascular and neurodegenerative diseases. Arch. Biochem. Biophys. 2020;696 doi: 10.1016/j.abb.2020.108662. PubMed DOI

Sun K.A., Li Y., Meliton A.Y., Woods P.S., Kimmig L.M., Cetin-Atalay R., Hamanaka R.B., Mutlu G.M. Endogenous itaconate is not required for particulate matter-induced NRF2 expression or inflammatory response. Elife. 2020;9 doi: 10.7554/ELIFE.54877. PubMed DOI PMC

Cheng J., Nanayakkara G., Shao Y., Cueto R., Wang L., Yang W.Y., Tian Y., Wang H., Yang X. Mitochondrial proton leak plays a critical role in pathogenesis of cardiovascular diseases HHS public access. Adv. Exp. Med. Biol. 2017;982:359–370. doi: 10.1007/978-3-319-55330-6_20. PubMed DOI PMC

Lyu Y., Yang J., Cheng L., Li Z., Zheng J. Benzo(a)pyrene-induced mitochondrial respiration and glycolysis disturbance in human neuroblastoma cells. J. Toxicol. Sci. 2023;48:87–97. PubMed

Brischigliaro M., Zeviani M. Cytochrome c oxidase deficiency. Biochim. Biophys. Acta Bioenerg. 2021;1862 doi: 10.1016/J.BBABIO.2020.148335. PubMed DOI

Forgacs A.L., Burgoon L.D., Lynn S.G., LaPres J.J., Zacharewski T. Effects of TCDD on the expression of nuclear encoded mitochondrial genes. Toxicol. Appl. Pharmacol. 2010;246:58. doi: 10.1016/J.TAAP.2010.04.006. PubMed DOI PMC

Vogel C.F.A., Van Winkle L.S., Esser C., Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020;34 doi: 10.1016/J.REDOX.2020.101530. PubMed DOI PMC

Zhao R.Z., Jiang S., Zhang L., Bin Yu Z. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med. 2019;44:3. doi: 10.3892/IJMM.2019.4188. PubMed DOI PMC

Nesci S. Proton leak through the UCPs and ANT carriers and beyond: a breath for the electron transport chain. Biochimie. 2023;214:77–85. doi: 10.1016/j.biochi.2023.06.008. PubMed DOI

Johansen J.L., Esbaugh A.J. Oil-induced responses of cardiac and red muscle mitochondria in red drum (Sciaenops ocellatus) ☆, Comparative Biochemistry and Physiology. Part. Char. 2019;219:35–41. doi: 10.1016/j.cbpc.2019.02.003. PubMed DOI

Kirby A.R., Galli G., Crossley J., Sweet L.E., Crossley Ii D.A., Roberts A.P. Gill filament permeabilization: a novel approach to assess mitochondrial function in sheepshead minnows (Cyprinodon variegatus) following anthraquinone exposure, Comparative Biochemistry and Physiology. Part. Char. 2019;230 doi: 10.1016/j.cbpc.2019.108699. PubMed DOI

Kozal J.S., Jayasundara N., Massarsky A., Lindberg C.D., Oliveri A.N., Cooper E.M., Levin E.D., Meyer J.N., Giulio R.T.D. Mitochondrial dysfunction and oxidative stress contribute to cross-generational toxicity of benzo(a)pyrene in Danio rerio. Aquat. Toxicol. 2023;263 doi: 10.1016/j.aquatox.2023.106658. PubMed DOI PMC

Cáceres L., Paz M.L., Garcés M., Calabró V., Magnani N.D., Martinefski M., Adami P.V.M., Caltana L., Tasat D., Morelli L., Tripodi V., Valacchi G., Alvarez S., González Maglio D., Marchini T., Evelson P. NADPH oxidase and mitochondria are relevant sources of superoxide anion in the oxinflammatory response of macrophages exposed to airborne particulate matter. Ecotoxicol. Environ. Saf. 2020;205 doi: 10.1016/j.ecoenv.2020.111186. PubMed DOI

Desler C., Hansen T.L., Frederiksen J.B., Marcker M.L., Singh K.K., Juel Rasmussen L. Is there a link between mitochondrial reserve respiratory capacity and aging? J Aging Res. 2012;2012 doi: 10.1155/2012/192503. PubMed DOI PMC

Xie N., Zhang L., Gao W., Huang C., Huber P.E., Zhou X., Li C., Shen G., Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Targeted Ther. 2020;5 doi: 10.1038/s41392-020-00311-7. PubMed DOI PMC

Lautrup S., Sinclair D.A., Mattson M.P., Fang E.F. NAD+ in brain aging and neurodegenerative disorders. Cell Metabol. 2019;30:630–655. doi: 10.1016/j.cmet.2019.09.001. PubMed DOI PMC

Fang E.F., Hou Y., Palikaras K., Adriaanse B.A., Kerr J.S., Yang B., Lautrup S., Hasan-Olive M., Caponio D., Dan X., Rocktäschel P., Croteau D.L., Akbari M., Greig N.H., Fladby T., Nilsen H., Cader M.Z., Mattson M.P., Tavernarakis N., Bohr V.A., Performed X.D. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease IHC, and ELISA experiments HHS Public Access. Nat. Neurosci. 2019;22:401–412. doi: 10.1038/s41593-018-0332-9. PubMed DOI PMC

Venkateswaran A., Sekhar K.R., Levic D.S., Melville D.B., Clark T.A., Rybski W.M., Walsh A.J., Skala M.C., Crooks P.A., Knapik E.W., Freeman M.L. The NADH oxidase ENOX1, a critical mediator of endothelial cell radiosensitization, is crucial for vascular development. Cancer Res. 2014;74:38. doi: 10.1158/0008-5472.CAN-13-1981. PubMed DOI PMC

Gao M., Cui N., Liu nan, Wang X. Inhibition of mitochondrial complex I leading to NAD+/NADH imbalance in type 2 diabetic patients who developed late stent thrombosis: evidence from an integrative analysis of platelet bioenergetics and metabolomics. Redox Biol. 2022;57 doi: 10.1016/j.redox.2022.102507. PubMed DOI PMC

Zhang R., Chen S., Wang Z., Ye L., Jiang Y., Li M., Jiang X., Peng H., Guo Z., Chen L., Zhang R., Niu Y., Aschner M., Li D., Chen W. Assessing the effects of nicotinamide mononucleotide supplementation on pulmonary inflammation in male mice subchronically exposed to ambient particulate matter. Environ. Health Perspect. 2023;131 doi: 10.1289/EHP12259. PubMed DOI PMC

Jang S., Kim E.W., Zhang Y., Lee J., Cho S.Y., Ha J., Kim H., Kim E. Particulate matter increases beta-amyloid and activated glial cells in hippocampal tissues of transgenic Alzheimer's mouse: involvement of PARP-1. Biochem. Biophys. Res. Commun. 2018;500:333–338. doi: 10.1016/j.bbrc.2018.04.068. PubMed DOI

Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018;14:450. doi: 10.1016/J.REDOX.2017.10.014. PubMed DOI PMC

Murphy M.P., Bayir H., Belousov V., Chang C.J., Davies K.J.A., Davies M.J., Dick T.P., Finkel T., Forman H.J., Janssen-Heininger Y., Gems D., Kagan V.E., Kalyanaraman B., Larsson N.G., Milne G.L., Nyström T., Poulsen H.E., Radi R., Van Remmen H., Schumacker P.T., Thornalley P.J., Toyokuni S., Winterbourn C.C., Yin H., Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 2022;4:651–662. doi: 10.1038/s42255-022-00591-z. PubMed DOI PMC

Botto L., Bulbarelli A., Lonati E., Cazzaniga E., Tassotti M., Mena P., Del Rio D., Palestini P. Study of the antioxidant effects of coffee phenolic metabolites on C6 glioma cells exposed to diesel exhaust particles. Antioxidants. 2021;10 doi: 10.3390/antiox10081169. PubMed DOI PMC

Kumar R., Singothu S., Bala Singh S., Bhandari V. Uncoupling proteins as a therapeutic target for the development of new era drugs against neurodegenerative disorder. Biomed. Pharmacother. 2022;147 doi: 10.1016/j.biopha.2022.112656. PubMed DOI

Wang Y., Zhang M., Li Z., Yue J., Xu M., Zhang Y., Yung K.K.L., Li R. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere. 2019;218:577–588. doi: 10.1016/j.chemosphere.2018.11.149. PubMed DOI

Iskusnykh I.Y., Zakharova A.A., Pathak D. Glutathione in brain disorders and aging. Molecules. 2022;27 doi: 10.3390/molecules27010324. PubMed DOI PMC

Song T., Song X., Zhu C., Patrick R., Skurla M., Santangelo I., Green M., Harper D., Ren B., Forester B.P., Öngür D., Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 2021;72 doi: 10.1016/J.ARR.2021.101503. PubMed DOI PMC

Shahbaz M.A., Kuivanen S., Lampinen R., Mussalo L., Hron T., Závodná T., Ojha R., Krejčík Z., Saveleva L., Tahir N.A., Kalapudas J., Koivisto A.M., Penttilä E., Löppönen H., Singh P., Topinka J., Vapalahti O., Chew S., Balistreri G., Kanninen K.M. Human-derived air–liquid interface cultures decipher Alzheimer's disease–SARS-CoV-2 crosstalk in the olfactory mucosa. J. Neuroinflammation. 2023;20:1–23. PubMed PMC

Hakkarainen H., Järvinen A., Lepistö T., Salo L., Kuittinen N., Laakkonen E., Yang M., Martikainen M.V., Saarikoski S., Aurela M., Barreira L., Teinilä K., Ihalainen M., Aakko-Saksa P., Timonen H., Rönkkö T., Jalava P. Toxicity of exhaust emissions from high aromatic and non-aromatic diesel fuels using in vitro ALI exposure system. Sci. Total Environ. 2023;890 doi: 10.1016/J.SCITOTENV.2023.164215. PubMed DOI

Vaupel P., Multhoff G., Bennet L., Chan J., Vaupel P., Multhoff G., Physiol J. Revisiting the Warburg effect: historical dogma versus current understanding. J. Physiol. 2021;599:1745–1757. doi: 10.1113/JP278810. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...