Global functional connectivity reorganization reflects cognitive processing speed deficits and fatigue in multiple sclerosis

. 2025 Jan ; 32 (1) : e16421. [epub] 20240726

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39058296

Grantová podpora
260648/SVV/2024 Univerzita Karlova v Praze
programme Cooperatio (Neuroscience) Univerzita Karlova v Praze
CZ.02.01.01/00/22_008/0004643 European Regional Development Fund

BACKGROUND AND PURPOSE: Cognitive impairment (CI) in multiple sclerosis (MS) is associated with bidirectional changes in resting-state centrality measures. However, practicable functional magnetic resonance imaging (fMRI) biomarkers of CI are still lacking. The aim of this study was to assess the graph-theory-based degree rank order disruption index (kD) and its association with cognitive processing speed as a marker of CI in patients with MS (PwMS) in a secondary cross-sectional fMRI analysis. METHODS: Differentiation between PwMS and healthy controls (HCs) using kD and its correlation with CI (Symbol Digit Modalities Test) was compared to established imaging biomarkers (regional degree, volumetry, diffusion-weighted imaging, lesion mapping). Additional associations were assessed for fatigue (Fatigue Scale for Motor and Cognitive Functions), gait and global disability. RESULTS: Analysis in 56 PwMS and 58 HCs (35/27 women, median age 45.1/40.5 years) showed lower kD in PwMS than in HCs (median -0.30/-0.06, interquartile range 0.55/0.54; p = 0.009, Mann-Whitney U test), yielding acceptable yet non-superior differentiation (area under curve 0.64). kD and degree in medial prefrontal cortex (MPFC) correlated with CI (kD/MPFC Spearman's ρ = 0.32/-0.45, p = 0.019/0.001, n = 55). kD also explained fatigue (ρ = -0.34, p = 0.010, n = 56) but neither gait nor disability. CONCLUSIONS: kD is a potential biomarker of CI and fatigue warranting further validation.

Zobrazit více v PubMed

Benedict RHB, Amato MP, DeLuca J, Geurts JJG. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020;19(10):860‐871. doi:10.1016/S1474-4422(20)30277-5 PubMed DOI PMC

Sumowski JF, Benedict R, Enzinger C, et al. Cognition in multiple sclerosis: state of the field and priorities for the future. Neurology. 2018;90(6):278‐288. doi:10.1212/WNL.0000000000004977 PubMed DOI PMC

Chard DT, Alahmadi AAS, Audoin B, et al. Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nat Rev Neurol. 2021;17(3):173‐184. doi:10.1038/s41582-020-00439-8 PubMed DOI

Rocca MA, Valsasina P, Meani A, Falini A, Comi G, Filippi M. Impaired functional integration in multiple sclerosis: a graph theory study. Brain Struct Funct. 2016;221(1):115‐131. doi:10.1007/s00429-014-0896-4 PubMed DOI

Carotenuto A, Valsasina P, Schoonheim MM, et al. Investigating functional network abnormalities and associations with disability in multiple sclerosis. Neurology. 2022;99(22):e2517‐e2530. doi:10.1212/WNL.0000000000201264 PubMed DOI

Dekker I, Schoonheim MM, Venkatraghavan V, et al. The sequence of structural, functional and cognitive changes in multiple sclerosis. Neuroimage Clin. 2021;29:102550. doi:10.1016/j.nicl.2020.102550 PubMed DOI PMC

Eijlers AJC, Wink AM, Meijer KA, Douw L, Geurts JJG, Schoonheim MM. Reduced network dynamics on functional MRI signals cognitive impairment in multiple sclerosis. Radiology. 2019;292(2):449‐457. doi:10.1148/radiol.2019182623 PubMed DOI

Eijlers AJC, Meijer KA, Wassenaar TM, et al. Increased default‐mode network centrality in cognitively impaired multiple sclerosis patients. Neurology. 2017;88(10):952‐960. doi:10.1212/WNL.0000000000003689 PubMed DOI

Huiskamp M, Eijlers AJC, Broeders TAA, et al. Longitudinal network changes and conversion to cognitive impairment in multiple sclerosis. Neurology. 2021;97(8):e794‐e802. doi:10.1212/WNL.0000000000012341 PubMed DOI PMC

Eijlers AJC, Meijer KA, van Geest Q, Geurts JJG, Schoonheim MM. Determinants of cognitive impairment in patients with multiple sclerosis with and without atrophy. Radiology. 2018;288(2):544‐551. doi:10.1148/radiol.2018172808 PubMed DOI

Mansour A, Baria AT, Tetreault P, et al. Global disruption of degree rank order: a hallmark of chronic pain. Sci Rep. 2016;6(1):34853. doi:10.1038/srep34853 PubMed DOI PMC

Achard S, Delon‐Martin C, Vértes PE, et al. Hubs of brain functional networks are radically reorganized in comatose patients. Proc Natl Acad Sci USA. 2012;109(50):20608‐20613. doi:10.1073/pnas.1208933109 PubMed DOI PMC

Bučková B, Kopal J, Řasová K, Tintěra J, Hlinka J. Open access: the effect of neurorehabilitation on multiple sclerosis—unlocking the resting‐state fMRI data. Front Neurosci. 2021;15:662784. doi:10.3389/fnins.2021.662784 PubMed DOI PMC

Rehák Bučková B, Mareš J, Škoch A, et al. Multimodal‐neuroimaging machine‐learning analysis of motor disability in multiple sclerosis. Brain Imaging Behav. 2023;17(1):18‐34. doi:10.1007/s11682-022-00737-3 PubMed DOI

Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292‐302. doi:10.1002/ana.22366 PubMed DOI PMC

Smith A. Symbol Digit Modalities Test. Western Psychological Services; 2017.

Penner IK, Raselli C, Stöcklin M, Opwis K, Kappos L, Calabrese P. The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis‐related fatigue. Mult Scler. 2009;15(12):1509‐1517. doi:10.1177/1352458509348519 PubMed DOI

Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444‐1452. doi:10.1212/wnl.33.11.1444 PubMed DOI

Podsiadlo D, Richardson S. The timed ‘Up & Go’: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142‐148. doi:10.1111/j.1532-5415.1991.tb01616.x PubMed DOI

Whitfield‐Gabrieli S, Nieto‐Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125‐141. doi:10.1089/brain.2012.0073 PubMed DOI

Grothe M, Domin M, Hoffeld K, Nagels G, Lotze M. Functional representation of the symbol digit modalities test in relapsing remitting multiple sclerosis. Mult Scler Relat Disord. 2020;43:102159. doi:10.1016/j.msard.2020.102159 PubMed DOI

Schmidt P, Gaser C, Arsic M, et al. An automated tool for detection of FLAIR‐hyperintense white‐matter lesions in multiple sclerosis. NeuroImage. 2012;59(4):3774‐3783. doi:10.1016/j.neuroimage.2011.11.032 PubMed DOI

Schoonheim MM, Geurts J, Wiebenga OT, et al. Changes in functional network centrality underlie cognitive dysfunction and physical disability in multiple sclerosis. Mult Scler. 2014;20(8):1058‐1065. doi:10.1177/1352458513516892 PubMed DOI

Tommasin S, De Giglio L, Ruggieri S, et al. Multi‐scale resting state functional reorganization in response to multiple sclerosis damage. Neuroradiology. 2020;62(6):693‐704. doi:10.1007/s00234-020-02393-0 PubMed DOI

Stellmann JP, Hodecker S, Cheng B, et al. Reduced rich‐club connectivity is related to disability in primary progressive MS. Neurol Neuroimmunol Neuroinflam. 2017;4(5):e375. doi:10.1212/NXI.0000000000000375 PubMed DOI PMC

Grothe M, Jochem K, Strauss S, et al. Performance in information processing speed is associated with parietal white matter tract integrity in multiple sclerosis. Front Neurol. 2022;13:982964. doi:10.3389/fneur.2022.982964 PubMed DOI PMC

Denissen S, Engemann DA, De Cock A, et al. Brain age as a surrogate marker for cognitive performance in multiple sclerosis. Eur J Neurol. 2022;29(10):3039‐3049. doi:10.1111/ene.15473 PubMed DOI PMC

Pike AR, James GA, Drew PD, Archer RL. Neuroimaging predictors of longitudinal disability and cognition outcomes in multiple sclerosis patients: a systematic review and meta‐analysis. Mult Scler Relat Disord. 2022;57:103452. doi:10.1016/j.msard.2021.103452 PubMed DOI

Has Silemek AC, Fischer L, Pöttgen J, et al. Functional and structural connectivity substrates of cognitive performance in relapsing remitting multiple sclerosis with mild disability. Neuroimage Clin. 2020;25:102177. doi:10.1016/j.nicl.2020.102177 PubMed DOI PMC

Bisecco A, Nardo FD, Docimo R, et al. Fatigue in multiple sclerosis: the contribution of resting‐state functional connectivity reorganization. Mult Scler. 2018;24(13):1696‐1705. doi:10.1177/1352458517730932 PubMed DOI

Penner IK, Paul F. Fatigue as a symptom or comorbidity of neurological diseases. Nature Rev Neurol. 2017;13(11):662‐675. doi:10.1038/nrneurol.2017.117 PubMed DOI

Manjaly ZM, Harrison NA, Critchley HD, et al. Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(6):642‐651. doi:10.1136/jnnp-2018-320050 PubMed DOI PMC

Fleischer V, Ciolac D, Gonzalez‐Escamilla G, et al. Subcortical volumes as early predictors of fatigue in multiple sclerosis. Ann Neurol. 2022;91(2):192‐202. doi:10.1002/ana.26290 PubMed DOI

Diedrichsen J, King M, Hernandez‐Castillo C, Sereno M, Ivry RB. Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. Neuron. 2019;102(5):918‐928. doi:10.1016/j.neuron.2019.04.021 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...