From fibres to adhesives: evolution of spider capture threads from web anchors by radical changes in silk gland function
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39081115
PubMed Central
PMC11289648
DOI
10.1098/rsif.2024.0123
Knihovny.cz E-zdroje
- Klíčová slova
- adhesive, convergence, piriform silk, spider silk, spidroin, viscid silk,
- MeSH
- adheziva chemie MeSH
- biologická evoluce MeSH
- hedvábí * chemie MeSH
- pavouci * chemie MeSH
- predátorské chování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adheziva MeSH
- hedvábí * MeSH
Spider webs that serve as snares are one of the most fascinating and abundant type of animal architectures. In many cases they include an adhesive coating of silk lines-so-called viscid silk-for prey capture. The evolutionary switch from silk secretions forming solid fibres to soft aqueous adhesives remains an open question in the understanding of spider silk evolution. Here we functionally and chemically characterized the secretions of two types of silk glands and their behavioural use in the cellar spider, Pholcus phalangioides. Both being derived from the same ancestral gland type that produces fibres with a solidifying glue coat, the two types produce respectively a quickly solidifying glue applied in thread anchorages and prey wraps, or a permanently tacky glue deployed in snares. We found that the latter is characterized by a high concentration of organic salts and reduced spidroin content, showing up a possible pathway for the evolution of viscid properties by hygroscopic-salt-mediated hydration of solidifying adhesives. Understanding the underlying molecular basis for such radical switches in material properties not only helps to better understand the evolutionary origins and versatility of ecologically impactful spider web architectures, but also informs the bioengineering of spider silk-based products with tailored properties.
Department of Biological Sciences University of Massachusetts Lowell Lowell MA 01854 USA
Functional Biodiversity Team Crop Research Institute Drnovská 507 CZ 16106 Prague 6 Ruzyně Czechia
School of Life Sciences University of Nottingham University Park Nottingham NG7 2RD UK
School of Natural Sciences Macquarie University Sydney New South Wales 2109 Australia
Zobrazit více v PubMed
Foelix RF. 2011. Biology of spiders, 3rd edn. Oxford, NY: Oxford University Press.
Eberhard W. 2020. Spider webs: behavior, function, and evolution. Chicago, IL: University of Chicago Press.
Blamires SJ, Zhang S, Tso I-M. 2017. Webs: diversity, structure and function. In Behaviour and ecology of spiders: contributions from the Neotropical region (eds Viera C, Gonzaga MO.), pp. 137-164. Berlin, Germany: Springer.
Wolff JO, et al. 2019. Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages. Evolution 73, 2122-2134. (10.1111/evo.13834) PubMed DOI
Bond JE, Opell BD. 1998. Testing adaptive radiation and key innovation hypotheses in spiders. Evol. Dev. 52, 403-414. (10.2307/2411077) PubMed DOI
Liu J, May-Collado LJ, Pekár S, Agnarsson I. 2016. A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): a predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae). Mol. Phylogenet. Evol. 94, 658-675. (10.1016/j.ympev.2015.09.023) PubMed DOI
Piorkowski D, Blackledge TA. 2017. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk. Sci. Nat. 104, 1-12. (10.1007/s00114-017-1489-x) PubMed DOI
Blamires SJ. 2024. Grand challenges in arachnid genetics and biomaterials. Front. Arachnid Sci. 3, 1356170. (10.3389/frchs.2024.1356170) DOI
Wolff JO, Cherry BR, Yarger JL, Adler L, Thomas DS, Hook JM, Blamires SJ. 2023. Organic salt composition of pressure sensitive adhesives produced by spiders. Front. Ecol. Evol. 11, 1123614. (10.3389/fevo.2023.1123614) DOI
Japyassú HF, Macagnan CR. 2004. Fishing for prey: the evolution of a new predatory tactic among spiders (Araneae, Pholcidae). Revista de Etologia 6, 79-94.
Benjamin SP, Zschokke S. 2002. Untangling the tangle-web: web construction behavior of the comb-footed spider Steatoda triangulosa and comments on phylogenetic implications (Araneae: Theridiidae). J. Insect Behav. 15, 791-809. (10.1023/A:1021175507377) DOI
Escalante I, Masís-Calvo M. 2014. The absence of gumfoot threads in webs of early juveniles and adult males of Physocyclus globosus (Pholcidae) is not associated with spigot morphology. Arachnology 16, 214-218. (10.13156/arac.2014.16.6.214) DOI
Argintean S, Chen J, Kim M, Moore A. 2006. Resilient silk captures prey in black widow cobwebs. Appl. Phys. A 82, 235-241. (10.1007/s00339-005-3430-y) DOI
Sahni V, Harris J, Blackledge TA, Dhinojwala A. 2012. Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat. Commun. 3, 1-7. (10.1038/Ncomms2099) PubMed DOI
Wolff JO. 2017. Structural effects of glue application in spiders – what can we learn from silk anchors? In Bio-inspired structured adhesives (eds Xue L, Heepe L, Gorb SN), pp. 63-80. Dordrecht, The Netherlands: Springer Science+Business Media.
Barrantes G, Eberhard WG. 2007. The evolution of prey-wrapping behaviour in spiders. J. Nat. Hist. 41, 1631-1658. (10.1080/00222930701464364) DOI
Escalante I. 2015. Predatory behaviour is plastic according to prey difficulty in naïve spiderlings. J. Insect Behav. 28, 635-650. (10.1007/s10905-015-9530-4) DOI
Kirchner W, Opderbeck M. 1990. Beuteerwerb, Giftwirkung und Nahrungsaufnahme bei der Zitterspinne Pholcus phalangioides (Araneae, Pholcidae). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg 31, 15-45.
Eberhard WG. 1992. Notes on the ecology and behaviour of Physocyclus globosus (Araneae, Pholcidae). Bull. Br. Arachnol. Soc. 9, 38-42.
Jackson RR, Brassington RJ. 1987. The biology of Pholcus phalangioides (Araneae, Pholcidae): predatory versatility, araneophagy and aggressive mimicry. J. Zool. 211, 227-238. (10.1111/j.1469-7998.1987.tb01531.x) DOI
Ackermann G. 2012. Lepidodactylus lugubris (Squamata: Gekkonidae) als Beute von Pholcus phalangioides (Araneae: Pholcidae). Arachnologische Mitteilungen 44, 14-16. (10.5431/aramit4404) DOI
O'Shea M, Kelly K. 2017. Predation on a weasel skink (Saproscincus mustelinus) (Squamata: Scincidae: Lygosominae) by a redback spider (Latrodectus hasselti) (Araneae: Araneomorpha: Theridiidae), with a review of other Latrodectus predation events involving squamates. Herpetofauna 44, 49-55.
Townley MA, Tillinghast EK. 2013. Aggregate silk gland secretions of araneoid spiders. In Spider ecophysiology, pp. 283-302. Berlin, Germany: Springer.
Collin MA, Clarke TH, Ayoub NA, Hayashi CY. 2016. Evidence from multiple species that spider silk glue component ASG2 is a spidroin. Sci. Rep. 6, 21589. (10.1038/srep21589) PubMed DOI PMC
Ayoub NA, et al. 2023. Orb weaver aggregate glue protein composition as a mechanism for rapid evolution of material properties. Front. Ecol. Evol. 11, 1099481. (10.3389/fevo.2023.1099481) DOI
Vollrath F, Tillinghast E. 1991. Glycoprotein glue beneath a spider web's aqueous coat. Naturwissenschaften 78, 557-559. (10.1007/BF01134447) DOI
Vollrath F, Fairbrother WJ, Williams RJ, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA. 1990. Compounds in the droplets of the orb spider's viscid spiral. Nat. Cell Biol. 345, 526-528.
Sahni V, Miyoshi T, Chen K, Jain D, Blamires SJ, Blackledge TA, Dhinojwala A. 2014. Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs. Biomacromolecules 15, 1225-1232. (10.1021/bm401800y) PubMed DOI
Sahni V, Blackledge TA, Dhinojwala A. 2011. Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci. Rep. 1, 41. (10.1038/Srep00041) PubMed DOI PMC
Sahni V, Blackledge TA, Dhinojwala A. 2010. Viscoelastic solids explain spider web stickiness. Nat. Commun. 1, 1-4. (10.1038/ncomms1019) PubMed DOI
Kirchner VW. 1986. Das Netz der Zitterspinne (Pholcus phalangioides Fuesslin)(Araneae: Pholcidae). Zool. Anz. 216, 151-169.
Kovoor J. 1986. Affinités de quelques Pholcidae (Araneae) décelables d'aprés les caractéres de l'appareil séricigéne. Mémoires de la Société Entomologique de Belgique 33, 111-118.
Apstein C. 1889. Bau und Funktion der Spinndrüsen der Araneida. Arch. Naturg. 55, 29-74.
Platnick NI, Coddington JA, Forster RR, Griswold CE. 1991. Spinneret morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). Am. Mus. Novit. 3016, 1-73.
Wolff JO, Michalik P, Ravelo AM, Herberstein ME, Ramírez MJ. 2021. Evolution of silk anchor structure as the joint effect of spinning behavior and spinneret morphology. Integr. Comp. Biol. 61, 1411-1431. (10.1093/icb/icab003) PubMed DOI
Kovoor J, Zylberberg L. 1980. Fine-structural aspects of silk secretion in a spider (Araneus diadematus). 1. Elaboration in the pyriform glands. Tissue Cell 12, 547-556. (10.1016/0040-8166(80)90044-0) PubMed DOI
Kovoor J, Zylberberg L. 1982. Fine-Structural Aspects of Silk Secretion in a Spider. 2. Conduction in the pyriform glands. Tissue Cell 14, 519-530. (10.1016/0040-8166(82)90044-1) PubMed DOI
Wolff JO, Grawe I, Wirth M, Karstedt A, Gorb SN. 2015. Spider's super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 11, 2394-2403. (10.1039/C4SM02130D) PubMed DOI
Schütt K. 1996. Wie Spinnen ihre Netze befestigen. Mikrokosmos 85, 274-278.
Wirth M, Wolff JO, Appel E, Gorb SN. 2019. Ultrastructure of spider thread anchorages. J. Morphol. 280, 534-543. (10.1002/jmor.20962) PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675. (10.1038/nmeth.2089) PubMed DOI PMC
Řezáč M, Krejčí T, Goodacre SL, Haddad CR, Řezáčová V. 2017. Morphological and functional diversity of minor ampullate glands in spiders from the superfamily Amaurobioidea (Entelegynae: RTA clade). J. Arachnol. 45, 198-209. (10.1636/JoA-16-010-Rezak.1) DOI
Wolff JO. 2020. The evolution of dragline initiation in spiders: multiple transitions from multi-to single-gland usage. Diversity 12, 4. (10.3390/d12010004) DOI
Blamires SJ, Nobbs M, Wolff JO, Heu C. 2022. Nutritionally induced nanoscale variations in spider silk structural and mechanical properties. J. Mech. Behav. Biomed. 125, 104873. (10.1016/j.jmbbm.2021.104873) PubMed DOI
Heu C, Berquand A, Elie-Caille C, Nicod L. 2012. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J. Struct. Biol. 178, 1-7. (10.1016/j.jsb.2012.02.007) PubMed DOI
Kaemmer SB. 2011. Introduction to Bruker's ScanAsyst and PeakForce Tapping AFM Technology. Bruker Application Note 133, 1-12.
Strickland M, Tudorica V, Řezáč M, Thomas NR, Goodacre SL. 2018. Conservation of a pH-sensitive structure in the C-terminal region of spider silk extends across the entire silk gene family. Heredity 120, 574-580. (10.1038/s41437-018-0050-9) PubMed DOI PMC
Eberhard WG. 2010. Possible functional significance of spigot placement on the spinnerets of spiders. J. Arachnol. 38, 407-414. (10.1636/B09-97.1) DOI
Frutiger M, Kropf C. 2019. An anti-adhesive surface coating reduces adhesion during contact with cribellar threads in Pholcus phalangioides (Araneae, Pholcidae) but not in the web-owning spider Uloborus plumipes (Araneae, Uloboridae). BioRxiv 838250. (10.1101/838250) DOI
Neugirg BR, Koebley SR, Schniepp HC, Fery A. 2016. AFM-based mechanical characterization of single nanofibres. Nanoscale 8, 8414-8426. (10.1039/C6NR00863A) PubMed DOI
Lefèvre T, Boudreault S, Cloutier C, Pézolet M. 2011. Diversity of molecular transformations involved in the formation of spider silks. J. Mol. Biol. 405, 238-253. (10.1016/j.jmb.2010.10.052) PubMed DOI
Jehlička J, Oren A, Vítek P. 2012. Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteria. Extremophiles 16, 507-514. (10.1007/s00792-012-0450-3) PubMed DOI
Wolff JO, Řezáč M, Krejčí T, Gorb SN. 2017. Hunting with sticky tape: functional shift in silk glands of araneophagous ground spiders (Gnaphosidae). J. Exp. Biol. 220, 2250-2259. (10.1242/jeb.154682) PubMed DOI
Wolff JO, Gorb SN. 2016. Attachment structures and adhesive secretions in arachnids. Cham, Switzerland: Springer International Publishing.
Eggs B, Wolff JO, Kuhn-Nentwig L, Gorb SN, Nentwig W. 2015. Hunting without a web: how lycosoid spiders subdue their prey. Ethology 121, 1166-1177. (10.1111/eth.12432) DOI
Dahlquist C. 1959. An investigation into the nature of tack. Adhes. Age 2, 25-29.
Creton C. 2003. Pressure-sensitive adhesives: an introductory course. MRS Bull. 28, 434-439. (10.1557/Mrs2003.124) DOI
Amarpuri G, Chaurasia V, Jain D, Blackledge TA, Dhinojwala A. 2015. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion. Sci. Rep. 5, 9030. (10.1038/srep09030) PubMed DOI PMC
Townley MA, Bernstein DT, Gallagher KS, Tillinghast EK. 1991. Comparative study of orb web hygroscopicity and adhesive spiral composition in three araneid spiders. J. Exp. Zool. Part A 259, 154-165.
Singla S, Amarpuri G, Dhopatkar N, Blackledge TA, Dhinojwala A. 2018. Hygroscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions. Nat. Commun. 9, 1890. (10.1038/s41467-018-04263-z) PubMed DOI PMC
Clarke TH, Garb JE, Haney RA, Chaw RC, Hayashi CY, Ayoub NA. 2017. Evolutionary shifts in gene expression decoupled from gene duplication across functionally distinct spider silk glands. Sci. Rep. 7, 8393. (10.1038/s41598-017-07388-1) PubMed DOI PMC
Lefevre T, Paquet-Mercier F, Rioux-Dubé JF, Pézolet M. 2012. Structure of silk by Raman spectromicroscopy: from the spinning glands to the fibers. Biopolymers 97, 322-336. (10.1002/bip.21712) PubMed DOI
Correa-Garhwal SM, Babb PL, Voight BF, Hayashi CY. 2021. Golden orb-weaving spider (Trichonephila clavipes) silk genes with sex-biased expression and atypical architectures. G3 11, jkaa039. PubMed PMC
Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H. 2010. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239-242. (10.1038/nature08936) PubMed DOI
Magalhaes IL, Azevedo GH, Michalik P, Ramírez MJ. 2020. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. Biol. Rev. 95, 184-217. (10.1111/brv.12559) PubMed DOI
Briceno RD. 1985. Sticky balls in webs of the spider Modisimus sp. (Araneae, Pholcidae). J. Arachnol. 13, 7.
Eberhard WG. 1992. Web construction by Modisimus sp. (Araneae, Pholcidae). J. Arachnol. 20, 25-34.
Eberhard WG, Barrantes G, Madrigal-Brenes R. 2008. Vestiges of an orb-weaving ancestor? The ‘biogenetic law’ and ontogenetic changes in the webs and building behavior of the black widow spider Latrodectus geometricus (Araneae Theridiidae). Ethol. Ecol. Evol. 20, 211-244. (10.1080/08927014.2008.9522523) DOI
Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I. 2009. Reconstructing web evolution and spider diversification in the molecular era. Proc. Natl Acad. Sci. USA 106, 5229-5234. (10.1073/pnas.0901377106) PubMed DOI PMC
Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. 2014. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr. Biol. 24, 1765-1771. (10.1016/j.cub.2014.06.034) PubMed DOI
Opell BD, Tran AM, Karinshak SE. 2011. Adhesive compatibility of cribellar and viscous prey capture threads and its implication for the evolution of orb-weaving spiders. J. Exp. Zool. A Ecol. Genet. Physiol. 315, 376-384. (10.1002/jez.684) PubMed DOI
Correa-Garhwal SM, Baker RH, Clarke TH, Ayoub NA, Hayashi CY. 2022. The evolutionary history of cribellate orb-weaver capture thread spidroins. BMC Ecol. Evol. 22, 1-16. (10.1186/s12862-021-01952-0) PubMed DOI PMC
Wolff JO, et al. . 2024. From fibres to adhesives: evolution of spider capture threads from web anchors by radical changes in silk gland function. Figshare. (10.6084/m9.figshare.c.7353450) PubMed DOI PMC