• This record comes from PubMed

A facile three-component route to powerful 5-aryldeazaalloxazine photocatalysts

. 2024 ; 20 () : 1831-1838. [epub] 20240731

Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection

Document type Journal Article

Functionalized 5-aryldeazaalloxazines have been successfully synthesised through a one-pot, three-component reaction involving N,N-dimethylbarbituric acid, an aromatic aldehyde and aniline. By utilizing readily available reagents, this approach opens up the opportunity for the efficient formation of a variety of 5-aryldeazaalloxazines bearing electron-donating or halogen groups. This practical method is characterised by atom economy and offers a direct route to the introduction of an aryl moiety into the C(5)-position of deazaalloxazines, thereby generating novel catalysts for photoredox catalysis without the need for subsequent purification. Thus, it significantly improves existing approaches.

See more in PubMed

Singh K, Kaur H, Smith P, de Kock C, Chibale K, Balzarini J. J Med Chem. 2014;57:435–448. doi: 10.1021/jm4014778. PubMed DOI

Pretorius S I, Breytenbach W J, de Kock C, Smith P J, N’Da D D. Bioorg Med Chem. 2013;21(1):269–277. doi: 10.1016/j.bmc.2012.10.019. PubMed DOI

Panday A K, Mishra R, Jana A, Parvin T, Choudhury L H. J Org Chem. 2018;83:3624–3632. doi: 10.1021/acs.joc.7b03272. PubMed DOI

Tran T N, Henary M. Molecules. 2022;27(9):2700. doi: 10.3390/molecules27092700. PubMed DOI PMC

Mal K, Naskar B, Chaudhuri T, Prodhan C, Goswami S, Chaudhuri K, Mukhopadhyay C. J Photochem Photobiol, A. 2020;389:112211. doi: 10.1016/j.jphotochem.2019.112211. DOI

Hirota K, Maruhashi K, Asao T, Kitamura N, Maki Y, Senda S. Chem Pharm Bull. 1983;31:3959–3966. doi: 10.1248/cpb.31.3959. DOI

Chae J B, Lee H, Kim C. J Fluoresc. 2020;30:347–356. doi: 10.1007/s10895-020-02501-6. PubMed DOI

Yamamoto T, Lee B-L. Macromolecules. 2002;35:2993–2999. doi: 10.1021/ma011632o. DOI

Pavlovska T, Cibulka R. Structure and Properties of Flavins. In: Cibulka R, Fraaije M, editors. Flavin-Based Catalysis: Principles and Applications. 1st ed. Weinheim, Germany: Wiley-VCH; 2021. pp. 1–27. DOI

Bedewy W A, Mohamed M S, Abdelhameed A M, Elsawy M A, Al-Muhur M, Ashida N, Abdalla A N, Elwaie T A, Nagamatsu T, Ali H I. J Enzyme Inhib Med Chem. 2023;38:2220570. doi: 10.1080/14756366.2023.2220570. PubMed DOI PMC

Insińska-Rak M, Golczak A, Gierszewski M, Anwar Z, Cherkas V, Kwiatek D, Sikorska E, Khmelinskii I, Burdziński G, Cibulka R, et al. Photochem Photobiol Sci. 2023;22(7):1655–1671. doi: 10.1007/s43630-023-00401-9. PubMed DOI

Prukała D, Gierszewski M, Karolczak J, Sikorski M. Phys Chem Chem Phys. 2015;17(28):18729–18741. doi: 10.1039/c5cp01566a. PubMed DOI

Prukała D, Taczkowska M, Gierszewski M, Pędziński T, Sikorski M. J Fluoresc. 2014;24(2):505–521. doi: 10.1007/s10895-013-1320-9. PubMed DOI

Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta R J, Cibulka R. Chem – Eur J. 2022;28(46):e202200768. doi: 10.1002/chem.202200768. PubMed DOI PMC

Pokluda A, Anwar Z, Boguschová V, Anusiewicz I, Skurski P, Sikorski M, Cibulka R. Adv Synth Catal. 2021;363(18):4371–4379. doi: 10.1002/adsc.202100024. DOI

Tolba A H, Vávra F, Chudoba J, Cibulka R. Eur J Org Chem. 2020:1579–1585. doi: 10.1002/ejoc.201901628. DOI

Obertík R, Chudoba J, Šturala J, Tarábek J, Ludvíková L, Slanina T, König B, Cibulka R. Chem – Eur J. 2022;28:e202202487. doi: 10.1002/chem.202202487. PubMed DOI

Graml A, Neveselý T, Jan Kutta R, Cibulka R, König B. Nat Commun. 2020;11(1):3174. doi: 10.1038/s41467-020-16909-y. PubMed DOI PMC

Pavlovska T, Weisheitelová I, Pramthaisong C, Sikorski M, Jahn U, Cibulka R. Adv Synth Catal. 2023;365:4662–4671. doi: 10.1002/adsc.202300843. DOI

Nishigaki S, Sato J, Shimizu K, Furukawa K, Senga K, Yoneda F. Chem Pharm Bull. 1980;28:142–149. doi: 10.1248/cpb.28.142. DOI

Dudkin S, Iaroshenko V O, Sosnovskikh V Ya, Tolmachev A A, Villinger A, Langer P. Org Biomol Chem. 2013;11(32):5351–5361. doi: 10.1039/c3ob26837c. PubMed DOI

Youssif S. Monatsh Chem. 1999;130:819–825. doi: 10.1007/pl00010263. DOI

Yoneda F, Tsukuda K, Shinozuka K, Hirayama F, Uekama K, Koshiro A. Chem Pharm Bull. 1980;28:3049–3056. doi: 10.1248/cpb.28.3049. DOI

Kokel B. J Heterocycl Chem. 1994;31:845–855. doi: 10.1002/jhet.5570310427. DOI

Verma C, Olasunkanmi L O, Obot I B, Ebenso E E, Quraishi M A. RSC Adv. 2016;6(19):15639–15654. doi: 10.1039/c5ra27417f. PubMed DOI PMC

Chandra A, Upadhyay S, Singh B, Sharma N, Singh R M. Tetrahedron. 2011;67:9219–9224. doi: 10.1016/j.tet.2011.09.032. DOI

Shen Q, Wang L, Yu J, Liu M, Qiu J, Fang L, Guo F, Tang J. Synthesis. 2012;44:389–392. doi: 10.1055/s-0031-1289657. DOI

Graziano G, Stefanachi A, Contino M, Prieto-Díaz R, Ligresti A, Kumar P, Scilimati A, Sotelo E, Leonetti F. Int J Mol Sci. 2023;24(7):6581. doi: 10.3390/ijms24076581. PubMed DOI PMC

Cores Á, Clerigué J, Orocio-Rodríguez E, Menéndez J C. Pharmaceuticals. 2022;15(8):1009. doi: 10.3390/ph15081009. PubMed DOI PMC

Khalafi-Nezhad A, Sarikhani S, Shahidzadeh E S, Panahi F. Green Chem. 2012;14:2876–2884. doi: 10.1039/c2gc35765h. DOI

Mahmoud S, Samaha D, Mohamed M S, Abou Taleb N A, Elsawy M A, Nagamatsu T, Ali H I. Molecules. 2020;25(11):2518. doi: 10.3390/molecules25112518. PubMed DOI PMC

Pandey A M, Digrawal N K, Mohanta N, Jamdade A B, Chaudhari M B, Bisht G S, Gnanaprakasam B. J Org Chem. 2021;86:8805–8828. doi: 10.1021/acs.joc.1c00714. PubMed DOI

Sharma M, Borah P, Bhuyan P J. Synth Commun. 2015;45:1792–1798. doi: 10.1080/00397911.2015.1045081. DOI

Marzo L, Pagire S K, Reiser O, König B. Angew Chem, Int Ed. 2018;57:10034–10072. doi: 10.1002/anie.201709766. PubMed DOI

Yadav P, Awasthi A, Gokulnath S, Tiwari D K. J Org Chem. 2021;86:2658–2666. doi: 10.1021/acs.joc.0c02696. PubMed DOI

Shi X, Zhang Q, Wang A, Jiang T-S. Adv Synth Catal. 2022;364(12):2086–2090. doi: 10.1002/adsc.202200284. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...