A facile three-component route to powerful 5-aryldeazaalloxazine photocatalysts

. 2024 ; 20 () : 1831-1838. [epub] 20240731

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39109299

Functionalized 5-aryldeazaalloxazines have been successfully synthesised through a one-pot, three-component reaction involving N,N-dimethylbarbituric acid, an aromatic aldehyde and aniline. By utilizing readily available reagents, this approach opens up the opportunity for the efficient formation of a variety of 5-aryldeazaalloxazines bearing electron-donating or halogen groups. This practical method is characterised by atom economy and offers a direct route to the introduction of an aryl moiety into the C(5)-position of deazaalloxazines, thereby generating novel catalysts for photoredox catalysis without the need for subsequent purification. Thus, it significantly improves existing approaches.

Zobrazit více v PubMed

Singh K, Kaur H, Smith P, de Kock C, Chibale K, Balzarini J. J Med Chem. 2014;57:435–448. doi: 10.1021/jm4014778. PubMed DOI

Pretorius S I, Breytenbach W J, de Kock C, Smith P J, N’Da D D. Bioorg Med Chem. 2013;21(1):269–277. doi: 10.1016/j.bmc.2012.10.019. PubMed DOI

Panday A K, Mishra R, Jana A, Parvin T, Choudhury L H. J Org Chem. 2018;83:3624–3632. doi: 10.1021/acs.joc.7b03272. PubMed DOI

Tran T N, Henary M. Molecules. 2022;27(9):2700. doi: 10.3390/molecules27092700. PubMed DOI PMC

Mal K, Naskar B, Chaudhuri T, Prodhan C, Goswami S, Chaudhuri K, Mukhopadhyay C. J Photochem Photobiol, A. 2020;389:112211. doi: 10.1016/j.jphotochem.2019.112211. DOI

Hirota K, Maruhashi K, Asao T, Kitamura N, Maki Y, Senda S. Chem Pharm Bull. 1983;31:3959–3966. doi: 10.1248/cpb.31.3959. DOI

Chae J B, Lee H, Kim C. J Fluoresc. 2020;30:347–356. doi: 10.1007/s10895-020-02501-6. PubMed DOI

Yamamoto T, Lee B-L. Macromolecules. 2002;35:2993–2999. doi: 10.1021/ma011632o. DOI

Pavlovska T, Cibulka R. Structure and Properties of Flavins. In: Cibulka R, Fraaije M, editors. Flavin-Based Catalysis: Principles and Applications. 1st ed. Weinheim, Germany: Wiley-VCH; 2021. pp. 1–27. DOI

Bedewy W A, Mohamed M S, Abdelhameed A M, Elsawy M A, Al-Muhur M, Ashida N, Abdalla A N, Elwaie T A, Nagamatsu T, Ali H I. J Enzyme Inhib Med Chem. 2023;38:2220570. doi: 10.1080/14756366.2023.2220570. PubMed DOI PMC

Insińska-Rak M, Golczak A, Gierszewski M, Anwar Z, Cherkas V, Kwiatek D, Sikorska E, Khmelinskii I, Burdziński G, Cibulka R, et al. Photochem Photobiol Sci. 2023;22(7):1655–1671. doi: 10.1007/s43630-023-00401-9. PubMed DOI

Prukała D, Gierszewski M, Karolczak J, Sikorski M. Phys Chem Chem Phys. 2015;17(28):18729–18741. doi: 10.1039/c5cp01566a. PubMed DOI

Prukała D, Taczkowska M, Gierszewski M, Pędziński T, Sikorski M. J Fluoresc. 2014;24(2):505–521. doi: 10.1007/s10895-013-1320-9. PubMed DOI

Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta R J, Cibulka R. Chem – Eur J. 2022;28(46):e202200768. doi: 10.1002/chem.202200768. PubMed DOI PMC

Pokluda A, Anwar Z, Boguschová V, Anusiewicz I, Skurski P, Sikorski M, Cibulka R. Adv Synth Catal. 2021;363(18):4371–4379. doi: 10.1002/adsc.202100024. DOI

Tolba A H, Vávra F, Chudoba J, Cibulka R. Eur J Org Chem. 2020:1579–1585. doi: 10.1002/ejoc.201901628. DOI

Obertík R, Chudoba J, Šturala J, Tarábek J, Ludvíková L, Slanina T, König B, Cibulka R. Chem – Eur J. 2022;28:e202202487. doi: 10.1002/chem.202202487. PubMed DOI

Graml A, Neveselý T, Jan Kutta R, Cibulka R, König B. Nat Commun. 2020;11(1):3174. doi: 10.1038/s41467-020-16909-y. PubMed DOI PMC

Pavlovska T, Weisheitelová I, Pramthaisong C, Sikorski M, Jahn U, Cibulka R. Adv Synth Catal. 2023;365:4662–4671. doi: 10.1002/adsc.202300843. DOI

Nishigaki S, Sato J, Shimizu K, Furukawa K, Senga K, Yoneda F. Chem Pharm Bull. 1980;28:142–149. doi: 10.1248/cpb.28.142. DOI

Dudkin S, Iaroshenko V O, Sosnovskikh V Ya, Tolmachev A A, Villinger A, Langer P. Org Biomol Chem. 2013;11(32):5351–5361. doi: 10.1039/c3ob26837c. PubMed DOI

Youssif S. Monatsh Chem. 1999;130:819–825. doi: 10.1007/pl00010263. DOI

Yoneda F, Tsukuda K, Shinozuka K, Hirayama F, Uekama K, Koshiro A. Chem Pharm Bull. 1980;28:3049–3056. doi: 10.1248/cpb.28.3049. DOI

Kokel B. J Heterocycl Chem. 1994;31:845–855. doi: 10.1002/jhet.5570310427. DOI

Verma C, Olasunkanmi L O, Obot I B, Ebenso E E, Quraishi M A. RSC Adv. 2016;6(19):15639–15654. doi: 10.1039/c5ra27417f. PubMed DOI PMC

Chandra A, Upadhyay S, Singh B, Sharma N, Singh R M. Tetrahedron. 2011;67:9219–9224. doi: 10.1016/j.tet.2011.09.032. DOI

Shen Q, Wang L, Yu J, Liu M, Qiu J, Fang L, Guo F, Tang J. Synthesis. 2012;44:389–392. doi: 10.1055/s-0031-1289657. DOI

Graziano G, Stefanachi A, Contino M, Prieto-Díaz R, Ligresti A, Kumar P, Scilimati A, Sotelo E, Leonetti F. Int J Mol Sci. 2023;24(7):6581. doi: 10.3390/ijms24076581. PubMed DOI PMC

Cores Á, Clerigué J, Orocio-Rodríguez E, Menéndez J C. Pharmaceuticals. 2022;15(8):1009. doi: 10.3390/ph15081009. PubMed DOI PMC

Khalafi-Nezhad A, Sarikhani S, Shahidzadeh E S, Panahi F. Green Chem. 2012;14:2876–2884. doi: 10.1039/c2gc35765h. DOI

Mahmoud S, Samaha D, Mohamed M S, Abou Taleb N A, Elsawy M A, Nagamatsu T, Ali H I. Molecules. 2020;25(11):2518. doi: 10.3390/molecules25112518. PubMed DOI PMC

Pandey A M, Digrawal N K, Mohanta N, Jamdade A B, Chaudhari M B, Bisht G S, Gnanaprakasam B. J Org Chem. 2021;86:8805–8828. doi: 10.1021/acs.joc.1c00714. PubMed DOI

Sharma M, Borah P, Bhuyan P J. Synth Commun. 2015;45:1792–1798. doi: 10.1080/00397911.2015.1045081. DOI

Marzo L, Pagire S K, Reiser O, König B. Angew Chem, Int Ed. 2018;57:10034–10072. doi: 10.1002/anie.201709766. PubMed DOI

Yadav P, Awasthi A, Gokulnath S, Tiwari D K. J Org Chem. 2021;86:2658–2666. doi: 10.1021/acs.joc.0c02696. PubMed DOI

Shi X, Zhang Q, Wang A, Jiang T-S. Adv Synth Catal. 2022;364(12):2086–2090. doi: 10.1002/adsc.202200284. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...