Comparison of Cricket Protein Powder and Whey Protein Digestibility
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
21-47159L
Czech Science Foundation (GAČR)
CZ.02.2.69/0.0/0.0/19_073/0016944
Improvement in Quality of the Internal Grant Scheme at CZU
LM2023064
The Ministry of Education, Youth and Sports
PubMed
39125003
PubMed Central
PMC11313836
DOI
10.3390/molecules29153598
PII: molecules29153598
Knihovny.cz E-zdroje
- Klíčová slova
- enthomophagy, insect protein, protein digestibility, suitability, whey protein,
- MeSH
- aminokyseliny metabolismus chemie MeSH
- esenciální aminokyseliny metabolismus MeSH
- Gryllidae metabolismus chemie MeSH
- nutriční hodnota MeSH
- prášky, zásypy, pudry * MeSH
- syrovátkové proteiny * chemie metabolismus MeSH
- trávení * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- aminokyseliny MeSH
- esenciální aminokyseliny MeSH
- prášky, zásypy, pudry * MeSH
- syrovátkové proteiny * MeSH
With the global population projected to reach nine billion by 2050, the search for alternative protein sources has become critical. This study evaluated the digestibility of cricket protein powder compared with that of whey protein powder. Cricket protein powder had a slightly lower protein content but higher fat content than whey protein powder. Although both contained all essential amino acids, their quantities varied. The most abundant essential amino acid was leucine in both samples. The essential amino acid index (EAAI) for cricket protein powder reached 79% when utilising crude protein for calculation. When using the amino acid sum calculation method, it increased by nearly 13%. The EAAI for whey protein was then 94% when calculated based on crude protein, with a slight increase observed when using the amino acid sum calculation method. Cricket protein exhibited a gradual increase in digestibility during intestinal digestion, reaching nearly 80%, whereas whey protein digestibility surpassed 97%. Despite the lower digestibility of cricket protein compared with whey protein, it remains sufficiently high for consideration as a valuable protein source. This study highlights the potential of cricket proteins and underscores the importance of assessing their protein content and digestibility in evaluating their nutritional value.
Zobrazit více v PubMed
Montowska M., Kowalczewski P.Ł., Rybicka I., Fornal E. Nutritional value, protein and peptide composition of edible cricket powders. Food Chem. 2019;289:130–138. doi: 10.1016/j.foodchem.2019.03.062. PubMed DOI
Hawkey K.J., Lopez-Viso C., Brameld J.M., Parr T., Salter A.M. Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annu. Rev. Anim. Biosci. 2021;9:333–354. doi: 10.1146/annurev-animal-021419-083930. PubMed DOI
Ariëns R.M.C., Bastiaan-Net S., van den Berg-Somhorst D.B.P.M., El Bachrioui K., Boudewijn A., van den Dool R.T.M., de Jong G.A.H., Wichers H.J., Mes J.J. Comparing nutritional and digestibility aspects of sustainable proteins using the INFOGEST digestion protocol. J. Funct. Foods. 2021;87:104748. doi: 10.1016/j.jff.2021.104748. DOI
Hermans W.J.H., Senden J.M., Churchward-Venne T.A., Paulussen K.J.M., Fuchs C.J., Smeets J.S.J., van Loon J.J.A., Verdijk L.B., van Loon L.J.C. Insects are a viable protein source for human consumption: From insect protein digestion to postprandial muscle protein synthesis in vivo in humans: A double-blind randomized trial. Am. J. Clin. Nutr. 2021;114:934–944. doi: 10.1093/ajcn/nqab115. PubMed DOI PMC
Oonincx D.G., van Itterbeeck J., Heetkamp M.J., van den Brand H., van Loon J.J., van Huis A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE. 2010;5:e14445. doi: 10.1371/journal.pone.0014445. PubMed DOI PMC
FAO . Expert Consultation Meeting: Assessing the Potential of Insects as Food and Feed in Assuring Food Security. FAO; Rome, Italy: 2012.
Raheem D., Raposo A., Oluwole O.B., Nieuwland M., Saraiva A., Carrascosa C. Entomophagy: Nutritional, ecological, safety and legislation aspects. Food Res. Int. 2019;126:108672. doi: 10.1016/j.foodres.2019.108672. PubMed DOI
Fernández-García E., Carvajal-Lérida I., Pérez-Gálvez A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 2009;29:751–760. doi: 10.1016/j.nutres.2009.09.016. PubMed DOI
Manditsera F.A., Luning P.A., Fogliano V., Lakemond C.M.M. Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects. Food Res. Int. 2019;121:404–411. doi: 10.1016/j.foodres.2019.03.052. PubMed DOI
Rodríguez-Rodríguez M., Barroso F.G., Fabrikov D., Sánchez-Muros M.J. In Vitro Crude Protein Digestibility of Insects: A Review. Insects. 2022;13:682. doi: 10.3390/insects13080682. PubMed DOI PMC
Kröger T., Dupont J., Büsing L., Fiebelkorn F. Acceptance of Insect-Based Food Products in Western Societies: A Systematic Review. Front. Nutr. 2021;8:759885. doi: 10.3389/fnut.2021.759885. PubMed DOI PMC
Guiné R.P.F. Textural Properties of Bakery Products: A Review of Instrumental and Sensory Evaluation Studies. Appl. Sci. 2022;12:8628. doi: 10.3390/app12178628. DOI
Siddiqi R.A., Singh T.P., Rani M., Sogi D.S., Bhat M.A. Diversity in grain, flour, amino acid composition, protein profiling, and proportion of total flour proteins of different wheat cultivars of North India. Front. Nutr. 2020;7:141. doi: 10.3389/fnut.2020.00141. PubMed DOI PMC
Amoah I., Cobbinah J.C., Yeboah J.A., Essiam F.A., Lim J.J., Tandoh M.A., Rush E. Edible Insect Powder for Enrichment of Bakery Products—A Review of Nutritional, Physical Characteristics and Acceptability of Bakery Products to Consumers. Future Foods. 2023;8:100251. doi: 10.1016/j.fufo.2023.100251. DOI
Murugu D.K., Onyango A.N., Ndiritu A.K., Osuga I.M., Xavier C., Nakimbugwe D., Tanga C.M. From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins. Front. Nutr. 2021;8:704002. doi: 10.3389/fnut.2021.704002. PubMed DOI PMC
Pilco-Romero G., Chisaguano-Tonato A.M., Herrera-Fontana M.E., Chimbo-Gándara L.F., Sharifi-Rad M., Giampieri F., Battino M., Vernaza M.G., Álvarez-Suárez J.M. House cricket (Acheta domesticus): A review based on its nutritional composition, quality, and potential uses in the food industry. Trends Food Sci. Technol. 2023;142:104226. doi: 10.1016/j.tifs.2023.104226. DOI
Ardoin R., Marx B.D., Boeneke C., Prinyawiwatkul W. Effects of cricket powder on selected physical properties and US consumer perceptions of whole-wheat snack crackers. Int. J. Food Sci. Technol. 2021;56:4070–4080. doi: 10.1111/ijfs.15032. DOI
Sah B.N.P., McAinch A.J., Vasiljevic T. Modulation of bovine whey protein digestion in gastrointestinal tract: A comprehensive review. Int. Dairy J. 2016;62:10–18. doi: 10.1016/j.idairyj.2016.07.003. DOI
Boirie Y. Chapter 16—Whey Protein and Muscle Protection. In: Walrand S., editor. Nutrition and Skeletal Muscle. Academic Press; Cambridge, MA, USA: 2019. pp. 271–281.
Ververis E., Boué G., Poulsen M., Pires S.M., Niforou A., Thomsen S.T., Tesson V., Federighi M., Naska A. A systematic review of the nutrient composition, microbiological and toxicological profile of Acheta domesticus (house cricket) J. Food Compos. Anal. 2022;114:104859. doi: 10.1016/j.jfca.2022.104859. DOI
van Huis A. Edible insects are the future? Proc. Nutr. Soc. 2016;75:294–305. doi: 10.1017/S0029665116000069. PubMed DOI
Ritvanen T., Pastell H., Welling A., Raatikainen M. The nitrogen-to-protein conversion factor of two cricket species—Acheta domesticus and Gryllus bimaculatus. Agric. Food Sci. 2020;29:1–5. doi: 10.23986/afsci.89101. DOI
Stone A.K., Tanaka T., Nickerson M.T. Protein quality and physicochemical properties of commercial cricket and mealworm powders. J. Food Sci. Technol. 2019;56:3355–3363. doi: 10.1007/s13197-019-03818-2. PubMed DOI PMC
Almeida C.C., Monteiro M.L.G., da Costa-Lima B.R.C., Alvares T.S., Conte-Junior C.A. In vitro digestibility of commercial whey protein supplements. LWT-Food Sci. Technol. 2015;61:7–11. doi: 10.1016/j.lwt.2014.11.038. DOI
Liu H., Zhang J., Chen Q., Hu A., Li T., Guo F., Wang Q. Preparation of Whole-Cut Plant-Based Pork Meat and Its Quality Evaluation with Animal Meat. Gels. 2023;9:461. doi: 10.3390/gels9060461. PubMed DOI PMC
Adhikari S., Schop M., de Boer I.J.M., Huppertz T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients. 2022;14:947. doi: 10.3390/nu14050947. PubMed DOI PMC
Ndiritu A., Kinyuru J., Kenji G., Njihia Gichuhi P. Extraction technique influences the physico-chemical characteristics and functional properties of edible crickets (Acheta domesticus) protein concentrate. J. Food Meas. Charact. 2017;11:2013–2021. doi: 10.1007/s11694-017-9584-4. DOI
Poelaert C., Beckers Y., Despret X., Portetelle D., Francis F., Bindelle J. In vitro evaluation of fermentation characteristics of two types of insects as potential novel protein feeds for pigs. J. Anim. Sci. 2016;94:198–201. doi: 10.2527/jas.2015-9533. DOI
Marono S., Piccolo G., Loponte R., Meo C., Attia Y., Nizza A., Bovera F. In Vitro Crude Protein Digestibility of Tenebrio molitor and Hermetia illucens Insect Meals and its Correlation with Chemical Composition Traits. Ital. J. Anim. Sci. 2015;14:3889. doi: 10.4081/ijas.2015.3889. DOI
Barber T.M., Kabisch S., Pfeiffer A.F.H., Weickert M.O. The Health Benefits of Dietary Fibre. Nutrients. 2020;12:3209. doi: 10.3390/nu12103209. PubMed DOI PMC
Stull V.J., Finer E., Bergmans R.S., Febvre H.P., Longhurst C., Manter D.K., Patz J.A., Weir T.L. Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Sci. Rep. 2018;8:10762. doi: 10.1038/s41598-018-29032-2. PubMed DOI PMC
Huecker M., Sarav M., Pearlman M., Laster J. Protein Supplementation in Sport: Source, Timing, and Intended Benefits. Curr. Nutr. Rep. 2019;8:382–396. doi: 10.1007/s13668-019-00293-1. PubMed DOI
Animal Feeding Stuffs–Determination of Nitrogen Content and Calculation of Crude Protein Content–Part 1: Kjeldahl Method. International Organization for Standardization; Geneva, Switzerland: 2005.
Animal Feeding Stuffs—Determination of Amino Acids Content. International Organization for Standardization; Geneva, Switzerland: 2005.
Brodkorb A., Egger L., Alminger M., Alvito P., Assunção R., Balance S., Bohn T., Bourlieu-Lacanal C., Boutrou R., Carrière F., et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019;14:991–1014. doi: 10.1038/s41596-018-0119-1. PubMed DOI