Mechanisms of Plasma Ozone and UV-C Sterilization of SARS-CoV-2 Explored through Atomic Force Microscopy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39240691
PubMed Central
PMC11420863
DOI
10.1021/acsami.4c11057
Knihovny.cz E-zdroje
- Klíčová slova
- binding activity, infectivity test, sterilization mechanisms, structural characteristics, topographical characteristics,
- MeSH
- Cercopithecus aethiops MeSH
- COVID-19 * MeSH
- inaktivace viru * účinky léků účinky záření MeSH
- lidé MeSH
- mikroskopie atomárních sil * MeSH
- ozon * chemie farmakologie MeSH
- plazmové plyny chemie farmakologie MeSH
- SARS-CoV-2 * účinky léků MeSH
- sterilizace metody MeSH
- ultrafialové záření * MeSH
- Vero buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ozon * MeSH
- plazmové plyny MeSH
Ultraviolet-C (UV-C) radiation and ozone gas are potential mechanisms employed to inactivate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), each exhibiting distinct molecular-level modalities of action. To elucidate these disparities and deepen our understanding, we delve into the intricacies of SARS-CoV-2 inactivation via UV-C and ozone gas treatments, exploring their distinct molecular-level impacts utilizing a suite of advanced techniques, including biological atomic force microscopy (Bio-AFM) and single virus force spectroscopy (SVFS). Whereas UV-C exhibited no perceivable alterations in virus size or surface topography, ozone gas treatment elucidated pronounced changes in both parameters, intensifying with prolonged exposure. Furthermore, a nuanced difference was observed in virus-host cell binding post-treatment: ozone gas distinctly reduced SARS-CoV-2 binding to host cells, while UV-C maintained the status quo. The results derived from these methodical explorations underscore the pivotal role of advanced Bio-AFM techniques and SVFS in enhancing our understanding of virus inactivation mechanisms, offering invaluable insights for future research and applications in viral contamination mitigation.
Department of Biomedical Engineering Sungkyunkwan University Suwon 16419 Republic of Korea
Institute of Biophysics Johannes Kepler University Linz Linz A 4020 Austria
Samsung Electronics Suwon 16677 Republic of Korea
School of Mechanical Engineering Sungkyunkwan University Suwon 16419 Republic of Korea
Zobrazit více v PubMed
Synowiec A.; Szczepański A.; Barreto-Duran E.; Lie L. K.; Pyrc K. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a systemic infection. Clin. Microbiol. Rev. 2021, 34 (2), 00133–00120. 10.1128/CMR.00133-20. PubMed DOI PMC
Marzoli F.; Bortolami A.; Pezzuto A.; Mazzetto E.; Piro R.; Terregino C.; Bonfante F.; Belluco S. A systematic review of human coronaviruses survival on environmental surfaces. Sci. Total Environ. 2021, 778, 14619110.1016/j.scitotenv.2021.146191. PubMed DOI PMC
Miller R. L.; Plagemann P. G. Effect of ultraviolet light on mengovirus: formation of uracil dimers, instability and degradation of capsid, and covalent linkage of protein to viral RNA. J. Virol. 1974, 13 (3), 729–739. 10.1128/jvi.13.3.729-739.1974. PubMed DOI PMC
Rangel K.; Cabral F. O.; Lechuga G. C.; Carvalho J. P.; Villas-Bôas M. H.; Midlej V.; De-Simone S. G. Detrimental effect of ozone on pathogenic bacteria. Microorganisms 2022, 10 (1), 40.10.3390/microorganisms10010040. PubMed DOI PMC
Lo C.-W.; Matsuura R.; Iimura K.; Wada S.; Shinjo A.; Benno Y.; Nakagawa M.; Takei M.; Aida Y. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins. Sci. Rep. 2021, 11 (1), 1380410.1038/s41598-021-93231-7. PubMed DOI PMC
Murata T.; Komoto S.; Iwahori S.; Sasaki J.; Nishitsuji H.; Hasebe T.; Hoshinaga K.; Yuzawa Y. Reduction of severe acute respiratory syndrome coronavirus-2 infectivity by admissible concentration of ozone gas and water. Microbiol. Immunol. 2021, 65 (1), 10–16. 10.1111/1348-0421.12861. PubMed DOI PMC
Lee J.; Bong C.; Lim W.; Bae P. K.; Abafogi A. T.; Baek S. H.; Shin Y.-B.; Bak M. S.; Park S. Fast and easy disinfection of coronavirus-contaminated face masks using ozone gas produced by a dielectric barrier discharge plasma generator. Environ. Sci. Technol. Lett. 2021, 8 (4), 339–344. 10.1021/acs.estlett.1c00089. PubMed DOI
Lyonnais S.; Hénaut M.; Neyret A.; Merida P.; Cazevieille C.; Gros N.; Chable-Bessia C.; Muriaux D. Atomic force microscopy analysis of native infectious and inactivated SARS-CoV-2 virions. Sci. Rep. 2021, 11 (1), 1188510.1038/s41598-021-91371-4. PubMed DOI PMC
Ataei-Pirkooh A.; Alavi A.; Kianirad M.; Bagherzadeh K.; Ghasempour A.; Pourdakan O.; Adl R.; Kiani S. J.; Mirzaei M.; Mehravi B. Destruction mechanisms of ozone over SARS-CoV-2. Sci. Rep. 2021, 11 (1), 1885110.1038/s41598-021-97860-w. PubMed DOI PMC
Celik U.; Celik K.; Celik S.; Abayli H.; Sahna K. C.; Tonbak Ş.; Toraman Z. A.; Oral A. Interpretation of SARS-CoV-2 behaviour on different substrates and denaturation of virions using ethanol: an atomic force microscopy study. RSC Adv. 2020, 10 (72), 44079–44086. 10.1039/D0RA09083B. PubMed DOI PMC
Kiss B.; Kis Z.; Pályi B.; Kellermayer M. S. Topography, spike dynamics and nanomechanics of individual native SARS-CoV-2 virions. Nano Lett. 2021, 21 (6), 2675–2680. 10.1021/acs.nanolett.0c04465. PubMed DOI PMC
Chan J. F.-W.; Oh Y. J.; Yuan S.; Chu H.; Yeung M.-L.; Canena D.; Chan C. C.-S.; Poon V. K.-M.; Chan C. C.-Y.; Zhang A. J.; et al. A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo. Cell Rep. Med. 2022, 3 (10), 100774.10.1016/j.xcrm.2022.100774. PubMed DOI PMC
Wildling L.; Rankl C.; Haselgrübler T.; Gruber H. J.; Holy M.; Newman A. H.; Zou M.-F.; Zhu R.; Freissmuth M.; Sitte H. H.; Hinterdorfer P. Probing binding pocket of serotonin transporter by single molecular force spectroscopy on living cells. J. Biol. Chem. 2012, 287 (1), 105–113. 10.1074/jbc.M111.304873. PubMed DOI PMC
Bong C.; Choi J. Y.; Bae J.; Park S.; Ko K. S.; Bak M. S.; Cheong H. S. Effectiveness of ozone generated by a dielectric barrier discharge plasma reactor against multidrug-resistant pathogens and Clostridioides difficile spores. Sci. Rep. 2022, 12 (1), 1411810.1038/s41598-022-18428-w. PubMed DOI PMC
Mendoza E. J.; Manguiat K.; Wood H.; Drebot M. Two Detailed Plaque Assay Protocols for the Quantification of Infectious SARS-CoV-2. Curr. Protoc. Microbiol. 2020, 57 (1), ecpmc105.10.1002/cpmc.105. PubMed DOI PMC
de Madrid A. T.; Porterfield J. S. A simple micro-culture method for the study of group B arboviruses. Bull. W.H.O. 1969, 40 (1), 113. PubMed PMC
Eyer L.; Valdés J. J.; Gil V. A.; Nencka R.; Hřebabecký H.; Šála M.; Salát J.; Černý J.; Palus M.; De Clercq E.; Ruzek D. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob. Agents Chemother. 2015, 59 (9), 5483–5493. 10.1128/AAC.00807-15. PubMed DOI PMC
Kordyukova L. V.; Moiseenko A. V.; Serebryakova M. V.; Shuklina M. A.; Sergeeva M. V.; Lioznov D. A.; Shanko A. V. Structural and immunoreactivity properties of the SARS-coV-2 spike protein upon the development of an inactivated vaccine. Viruses 2023, 15 (2), 480.10.3390/v15020480. PubMed DOI PMC
Kienberger F.; Costa L. T.; Zhu R.; Kada G.; Reithmayer M.; Chtcheglova L.; Rankl C.; Pacheco A. B.; Thalhammer S.; Pastushenko V.; et al. Dynamic force microscopy imaging of plasmid DNA and viral RNA. Biomaterials 2007, 28 (15), 2403–2411. 10.1016/j.biomaterials.2007.01.025. PubMed DOI
Nečas D.; Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 2012, 10 (1), 181–188. 10.2478/s11534-011-0096-2. DOI
Oh Y. J.; Hubauer-Brenner M.; Gruber H. J.; Cui Y.; Traxler L.; Siligan C.; Park S.; Hinterdorfer P. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci. Rep. 2016, 6 (1), 3390910.1038/srep33909. PubMed DOI PMC
Zhu R.; Canena D.; Sikora M.; Klausberger M.; Seferovic H.; Mehdipour A. R.; Hain L.; Laurent E.; Monteil V.; Wirnsberger G.; et al. Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level. Nat. Commun. 2022, 13 (1), 7926.10.1038/s41467-022-35641-3. PubMed DOI PMC
Battino R.; Rettich T. R.; Tominaga T. The solubility of oxygen and ozone in liquids. J. Phys. Chem. Ref. Data 1983, 12 (2), 163–178. 10.1063/1.555680. DOI
Kefely A.; Rakovski S.; Shopov D.; Razumovskii S.; Rakovski R.; Zaikov G. Kinetic relationships and mechanism of ozone reaction with polystyrene in CCl4 solution. J. Polym. Sci., Polym. Chem. Ed. 1981, 19 (9), 2175–2184. 10.1002/pol.1981.170190905. DOI
Ortega-Esteban A.; Condezo G. N.; Pérez-Berná A. J.; Chillón M.; Flint S. J.; Reguera D.; San Martín C.; De Pablo P. J. Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 2015, 9 (11), 10826–10833. 10.1021/acsnano.5b03417. PubMed DOI
Lin S.; Lee C. K.; Lee S. Y.; Kao C. L.; Lin C. W.; Wang A. B.; Hsu S. M.; Huang L. S. Surface ultrastructure of SARS coronavirus revealed by atomic force microscopy. Cell. Microbiol. 2005, 7 (12), 1763–1770. 10.1111/j.1462-5822.2005.00593.x. PubMed DOI PMC
Heßling M.; Hönes K.; Vatter P.; Lingenfelder C. Ultraviolet irradiation doses for coronavirus inactivation–review and analysis of coronavirus photoinactivation studies. GMS Hyg.. Infect. Control 2020, 15, Doc08.10.3205/dgkh000343. PubMed DOI PMC
Epelle E. I.; Macfarlane A.; Cusack M.; Burns A.; Thissera B.; Mackay W.; Rateb M. E.; Yaseen M. Bacterial and fungal disinfection via ozonation in air. J. Microbiol. Methods 2022, 194, 10643110.1016/j.mimet.2022.106431. PubMed DOI
Bayarri B.; Cruz-Alcalde A.; López-Vinent N.; Micó M. M.; Sans C. Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses. J. Hazard. Mater. 2021, 415, 12565810.1016/j.jhazmat.2021.125658. PubMed DOI PMC
Roos W. H.; Wuite G. J. Nanoindentation studies reveal material properties of viruses. Adv. Mater. 2009, 21 (10–11), 1187–1192. 10.1002/adma.200801709. DOI
Nonn A.; Kiss B.; Pezeshkian W.; Tancogne-Dejean T.; Cerrone A.; Kellermayer M.; Bai Y.; Li W.; Wierzbicki T. Inferring mechanical properties of the SARS-CoV-2 virus particle with nano-indentation tests and numerical simulations. J. Mech. Behav. Biomed. 2023, 148, 10615310.1016/j.jmbbm.2023.106153. PubMed DOI
Yao H.; Song Y.; Chen Y.; Wu N.; Xu J.; Sun C.; Zhang J.; Weng T.; Zhang Z.; Wu Z.; et al. Molecular architecture of the SARS-CoV-2 virus. Cell 2020, 183 (3), 730–738. 10.1016/j.cell.2020.09.018. PubMed DOI PMC
Oh Y. J.; Plochberger B.; Rechberger M.; Hinterdorfer P. Characterizing the effect of polymyxin B antibiotics to lipopolysaccharide on Escherichia coli surface using atomic force microscopy. J. Mol. Recognit. 2017, 30 (6), e260510.1002/jmr.2605. PubMed DOI
Rankl C.; Kienberger F.; Wildling L.; Wruss J.; Gruber H. J.; Blaas D.; Hinterdorfer P. Multiple receptors involved in human rhinovirus attachment to live cells. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (46), 17778–17783. 10.1073/pnas.0806451105. PubMed DOI PMC
dos Santos Natividade R.; Koehler M.; Gomes P. S.; Simpson J. D.; Smith S. C.; Gomes D. E.; de Lhoneux J.; Yang J.; Ray A.; Dermody T. S.; Bernardi R. C.; Ogden K. M.; Alsteens D. Deciphering molecular mechanisms stabilizing the reovirus-binding complex. Proc. Natl. Acad. Sci. U.S.A. 2023, 120 (21), e222074112010.1073/pnas.2220741120. PubMed DOI PMC
Sieben C.; Kappel C.; Zhu R.; Wozniak A.; Rankl C.; Hinterdorfer P.; Grubmüller H.; Herrmann A. Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (34), 13626–13631. 10.1073/pnas.1120265109. PubMed DOI PMC