The sucrose signalling route controls Flavescence dorée phytoplasma load in grapevine leaves
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
PE0000018
National Recovery and Resilience Plan
D13C22002160001
National Recovery and Resilience Plan
LM2023048
Ministry of Education
PubMed
39259686
PubMed Central
PMC12321740
DOI
10.1093/jxb/erae381
PII: 7755149
Knihovny.cz E-zdroje
- Klíčová slova
- Defence-associated genes, phytoplasma disease, recovery, sugar metabolism, sugar signalling, trehalose-6-phosphate,
- MeSH
- cukerné fosfáty metabolismus MeSH
- glukosyltransferasy metabolismus genetika MeSH
- listy rostlin mikrobiologie metabolismus MeSH
- nemoci rostlin * mikrobiologie MeSH
- Phytoplasma * fyziologie MeSH
- sacharosa * metabolismus MeSH
- signální transdukce * MeSH
- trehalosa analogy a deriváty metabolismus MeSH
- Vitis * mikrobiologie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cukerné fosfáty MeSH
- glukosyltransferasy MeSH
- sacharosa * MeSH
- trehalosa MeSH
- trehalose-6-phosphate MeSH Prohlížeč
Flavescence dorée (FD) is a phytoplasma disease transmitted by insects, causing severe damage in vineyards across Europe. Since there is no effective treatment, infected plants must be removed to prevent further spread. There is variation in susceptibility to FD among different grapevine cultivars, and some exhibit symptom remission, known as recovery, although the mechanisms behind this are unclear. Diseased plants accumulate soluble sugars, including sucrose, which influences the concentration of trehalose-6-phosphate (T6P), a signalling molecule affecting plant growth and stress responses. It is hypothesized that sucrose-mediated signalling via T6P could trigger defence mechanisms, reducing FD pathogen load and increasing plant recovery. To test this hypothesis, two grapevine genotypes with different susceptibility to FD were compared, revealing increased sucrose level and trehalose-6-phosphate synthase (TPS) activity in the more tolerant cultivar. However, FD-infected plants showed inhibited sucrose-cleaving enzymes and no activation of TPS expression. Attempts to enhance sucrose levels through trunk infusion and girdling promoted sucrose metabolism, T6P biosynthesis, and defence gene expression, facilitating symptom recovery. Girdling particularly enhanced T6P biosynthesis and expression of defence genes above the treatment point, reducing FD pathogen presence and promoting recovery. These findings indicate that elevated sucrose levels, possibly signalling through T6P, may limit FD pathogen spread, aiding in plant recovery.
Dept of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M. 2010. The PubMed DOI PMC
André A, Maucourt M, Moing A, Rolin D, Renaudin J. 2005. Sugar import and phytopathogenicity of PubMed DOI
Berger S, Papadopoulus M, Schreiber U, Kaiser W, Roitsch T. 2004. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection. Physiologia Plantarum 122, 419–428. doi: 10.1111/j.1399-3054.2004.00433.x DOI
Bertaccini A. 2007. Phytoplasmas diversity, taxonomy, and epidemiology. Frontiers in Bioscience 12, 673–689. doi: 10.2741/2092 PubMed DOI
Bosco D, Marzachì C. 2016. Insect transmission of phytoplasmas. In: Brown J, ed. Vector-mediated transmission of plant pathogens. St Paul, MN, USA: APS Press, Ch. 22, 319–327. doi: 10.1094/9780890545355.022 DOI
Breia R, Conde A, Badim H, Fortes AM, Geròs H, Granell A. 2021. Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiology 186, 836–852. doi: 10.1093/plphys/kiab127 PubMed DOI PMC
Cardot C, Mappa G, La Camera S, Gaillard C, Vriet C, Lecomte P, Ferrari G, Coutos-Thévenot P. 2019. Comparison of the molecular responses of tolerant, susceptible and highly susceptible grapevine cultivars during interaction with the pathogenic fungus PubMed DOI PMC
Carra A, Gambino G, Schubert A. 2007. A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Analytical Biochemistry 360, 318–320. doi: 10.1016/j.ab.2006.09.022 PubMed DOI
Chen J-J, Zhang J, He X-Q. 2014. Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration. Physiologia Plantarum 151, 147–155. doi: 10.1111/ppl.12112 PubMed DOI
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. 2018. miRVIT: a novel miRNA database and its application to uncover PubMed DOI PMC
Chuche J, Thiéry D. 2014. Biology and ecology of the Flavescence dorée vector DOI
Covington ED, Roitsch T, Dermasta M. 2016. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues. Acta Chimica Slovenica 63, 757–762. doi: 10.17344/acsi.2016.2484 PubMed DOI
EFSA Panel on Plant Health 2014. Scientific opinion on pest categorisation of grapevine Flavescence dorée. EFSA Journal 12, 3851. https://www.efsa.europa.eu/it/efsajournal/pub/3851
Eveillard S, Jollard C, Labroussaa F, et al. 2016. Contrasting susceptibilities to Flavescence dorée in PubMed DOI PMC
Figueroa CM, Lunn JE. 2016. A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiology 172, 7–27. doi: 10.1104/pp.16.00417 PubMed DOI PMC
Fu Q, Cheng L, Guo Y, Turgeon R. 2011. Phloem loading strategies and water relations in trees and herbaceous plants. Plant Physiology 157, 1518–1527. doi: 10.1104/pp.111.184820 PubMed DOI PMC
Gambino G, Boccacci P, Margaria P, Palmano S, Gribaudo I. 2013. Hydrogen peroxide accumulation and transcriptional changes in grapevines recovered from Flavescence dorée disease. Phytopathology 103, 776–784. doi: 10.1094/PHYTO-11-12-0309-R PubMed DOI
Hayes A, Feechan A, Dry IB. 2010. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiology 153, 211–221. doi: 10.1104/pp.110.154765 PubMed DOI PMC
Hayes MA, Davies C, Dry IB. 2007. Isolation, functional characterization, and expression analysis of grapevine ( PubMed DOI
Hogenhout AS, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN, Namba S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology 9, 403–423. doi: 10.1111/j.1364-3703.2008.00472.x PubMed DOI PMC
Horsfall JG, Dimond AE. 1957. Interactions of tissue sugar, growth substances, and disease susceptibility. Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz 64, 415–421. https://www.jstor.org/stable/43231735
Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K. 2009. ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10, 460. doi: 10.1186/1471-2164-10-460 PubMed DOI PMC
Jammer A, Akhtar SS, Buchvaldt Amby D, Pandey C, Mekureyaw MF, Bak F, Roitsch T. 2022. Enzyme activity profiling as an emerging tool for cell physiological phenotyping within functional phenomics to assess plant growth and stress responses. Journal of Experimental Botany 73, 5170–5198. doi: 10.1093/jxb/erac215 PubMed DOI
Jammer A, Gasperl A, Luschin-Ebengreuth N, et al. 2015. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. Journal of Experimental Botany 66, 553–5542. doi: 10.1093/jxb/erv228 PubMed DOI
Kerbler SM-L, Armijos-Jaramillo V, Lunn JE, Vicente R. 2023. The trehalose 6-phosphate phosphatase family in plants. Physiologia Plantarum 175, e14096. doi: 10.1111/ppl.14096 PubMed DOI
Kirazawa Y, Iwabuchi N, Maejima K, et al. 2022. A phytoplasma effector acts as a ubiquitin-like mediator between floral MADS-box proteins and proteasome shuttle proteins. The Plant Cell 34, 1709–1723. doi: 10.1093/plcell/koac062 PubMed DOI PMC
Kuzmanović S, Martini M, Ermacora P, Ferrini F, Starović M, Tosić M, Carraro L, Osler R. 2008. Incidence and molecular characterization of flavescence dorée and stolbur phytoplasmas in grapevine cultivars from different viticultural areas of Serbia. Vitis 47, 105–111. https://hdl.handle.net/11390/882521
Lepka P, Stitt M, Moll E, Seemüller E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology 55, 59–68. doi: 10.1006/pmpp.1999.0202 DOI
Liu YH, Song YH, Ruan YL. 2022. Sugar conundrum in plant–pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. Journal of Experimental Botany 73, 1910–1925. doi: 10.1093/jxb/erab562 PubMed DOI PMC
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25, 402–408. doi: 10.1006/meth.2001.1262 PubMed DOI
Margaria P, Ferrandino A, Caciagli P, Kedrina O, Schubert A, Palmano S. 2014. Time course metabolic and transcript analysis of the flavonoid pathway in Nebbiolo and Barbera grapevines ( PubMed DOI
McAdam S, Brodribb TJ, Ross JJ. 2016. Shoot-derived abscisic acid promotes root growth. Plant, Cell & Environment 39, 652–659. doi: 10.1111/pce.12669 PubMed DOI
Morabito C, Secchi F, Schubert A. 2021. Grapevine TPS (trehalose-6-phosphate synthase) family genes are differentially regulated during development, upon sugar treatment and drought stress. Plant Physiology and Biochemistry 164, 54–62. doi: 10.1016/j.plaphy.2021.04.032 PubMed DOI
Morone C, Boveri M, Giosuè S, Gotta P, Rossi V, Scapin I, Marzachì C. 2007. Epidemiology of flavescence dorée in vineyards in North-western Italy. Phytopathology 97, 1422–1427. doi: 10.1094/PHYTO-97-11-1422 PubMed DOI
Musetti R, Buxa SV, De Marco F, Loschi A, Polizzotto R, Kogel K-H, van Bel AJE. 2013. Phytoplasma-triggered Ca PubMed DOI
Naseem M, Kunz M, Dandekar T. 2017. Plant–pathogen maneuvering over apoplastic sugars. Trends in Plant Science 22, 740–743. doi: 10.1016/j.tplants.2017.07.001 PubMed DOI
Pagliarani C, Gambino G, Ferrandino A, Chitarra W, Vrhovsek U, Cantù D, Palmano S, Marzachì C, Schubert A. 2020. Molecular memory of PubMed DOI PMC
Pelletier C, Salar P, Gillet J, Cloquemin G, Very P, Foissac X, Malembic-Maher S. 2009. Triplex real-time PCR assay for sensitive and simultaneous detection of grapevine phytoplasmas of the 16SrV and 16SrXII-A groups with an endogenous analytical control. Vitis 48, 87–95. doi: 10.5073/vitis.2009.48.87-95 DOI
Prezelj N, Covington E, Roitsch T, Gruden K, Fragner L, Weckwerth W, Chersicola M, Vodopivec M, Dermastia M. 2016. Metabolic consequences of infection of grapevine ( PubMed DOI PMC
Prezelj N, Nikolić P, Gruden K, Ravnikar M, Dermastia M. 2013. Spatiotemporal distribution of flavescence dorée phytoplasma in grapevine. Plant Pathology 62, 760–766. doi: 10.1111/j.1365-3059.2012.02693.x PubMed DOI PMC
Proels RK, Hückelhoven R. 2014. Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Molecular Plant Pathology 15, 858–864. doi: 10.1111/mpp.12139 PubMed DOI PMC
Ripamonti M, Maron F, Cornara D, Marzachì C, Fereres A, Bosco D. 2022. Leafhopper feeding behaviour on three grapevine cultivars with different susceptibilities to Flavescence dorée. Journal of Insect Physiology 137, 104366. doi: 10.1016/j.jinsphys.2022.104366 PubMed DOI
Ripamonti M, Pacifico D, Roggia C, Palmano S, Rossi M, Bodino N, Marzachì C, Bosco D, Galetto L. 2020. Recovery from grapevine flavescence dorée in areas of high infection pressure. Agronomy 10, 1479. doi: 10.3390/agronomy10101479 DOI
Ripamonti M, Pegoraro M, Morabito C, Gribaudo I, Schubert A, Bosco D, Marzachì C. 2021. Susceptibility to flavescence dorée of different DOI
Roggia C, Caciagli L, Galetto D, Pacifico F, Veratti F, Bosco D, Marzachì C. 2014. Flavescence doreée phytoplasma titre in field-infected Barbera and Nebbiolo grapevines. Plant Pathology 63, 31–41. doi: 10.1111/ppa.12068 DOI
Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK. 2003. Extracellular invertase: key metabolic enzyme and PR protein. Journal of Experimental Botany 54, 513–524. doi: 10.1093/jxb/erg050 PubMed DOI
Roitsch T, Gonzalez M. 2004. Function and regulation of invertases in higher plants: sweet sensations. Trends in Plant Science 9, 606–613. doi: 10.1016/j.tplants.2004.10.009 PubMed DOI
Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57, 675–709. doi: 10.1146/annurev.arplant.57.032905.105441 PubMed DOI
Ruffner HP, Adler S, Rast DM. 1990. Soluble and wall associated forms of invertase in
Santi S, De Marco F, Polizzotto R, Grisan S, Musetti R. 2013. Recovery from stolbur disease in grapevine involves changes in sugar transport and metabolism. Frontiers in Plant Science 4, 171. doi: 10.3389/fpls.2013.00171 PubMed DOI PMC
Santi S, Grisan S, Pierasc A, De Marco F, Musetti R. 2012. Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant, Cell & Environment 36, 343–355. doi: 10.1111/j.1365-3040.2012.02577.x PubMed DOI
Sugio A, Kingdom NK, MacLean AM, Grieve VM, Hogenhout SA. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences, USA 108, E1254–E1263. doi: 10.1073/pnas.1105664108 PubMed DOI PMC
Teixeira A, Martins V, Frusciante S, Cruz T, Noronha H, Diretto G, Geros H. 2020. Flavescence dorée-derived leaf yellowing in grapevine ( PubMed DOI PMC
Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M. 2012. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biology 12, 130. doi: 10.1186/1471-2229-12-130 PubMed DOI PMC
Vitali M, Chitarra W, Galetto L, Bosco D, Marzachì C, Gullino ML, Spanna F, Lovisolo C. 2013. Flavescence dorée phytoplasma deregulates stomatal control of photosynthesis in DOI
Wu B, Liu H, Guan L, Fan P, Li S. 2015. Carbohydrate metabolism in grape cultivars that differ in sucrose accumulation. Vitis 50, 51–57.
Zhang Y, Primavesi LF, Jhurreea D, Andraloj PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ. 2009. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiology 149, 1860–1861. doi: 10.1104/pp.108.133934 PubMed DOI PMC
Zhou R, Cheng L.. 2008. Competitive inhibition of phosphoglucose isomerase of apple leaves by sorbitol 6-phosphate. Journal of Plant Physiology 165, 903–910. doi: 10.1016/j.jplph.2007.12.002. PubMed DOI