Idiopathic Pulmonary Fibrosis: Review of Current Knowledge
Language English Country Czech Republic Media print
Document type Journal Article, Review
PubMed
39264073
PubMed Central
PMC11414582
DOI
10.33549/physiolres.935322
PII: 935322
Knihovny.cz E-resources
- MeSH
- Idiopathic Pulmonary Fibrosis * therapy diagnosis physiopathology pathology MeSH
- Humans MeSH
- Lung pathology physiopathology MeSH
- Lung Transplantation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Idiopathic pulmonary fibrosis (IPF) is a severe and currently incurable disease that is associated with irreversible fibrotic remodeling of the lung parenchyma. Pathological remodeling of the lung leads to damage of the alveolo-capillary barrier. There is a reduction in the diffusing capacity of the lungs for respiratory gases. Later, changes in the mechanical properties of lung tissue occur - their compliance decreases and respiratory work increases. Impaired respiratory gases exchange with restrictive ventilatory failure lead to tissue hypoxia and muscle weakness. Progressive respiratory insufficiency develops. The triggers of fibrotic remodeling of the lung are currently unknown, as are the pathomechanisms that keep this process active. IPF can only be slowed pharmacologically, not reversed. It is therefore very important to start its treatment as soon as possible. Early detection of IPF patients requires a multidisciplinary approach. Diagnosis, treatment initiation, and monitoring in specialized centers offer the best chance of slowing disease progression, enhancing quality of life, and extending patient survival. In addition to antifibrotic therapy, good lifestyle management, maintenance of physical fitness and treatment of associated chronic diseases such as diabetes and cardiac comorbidities are important. Lung transplantation is an option for some patients with IPF. This is a challenging treatment modality, requiring close collaboration with transplant centers and expert selection of suitable candidates, influenced, among other things, by the availability of suitable donor lungs. Our article aims to provide current information about IPF, focusing on its functional consequences and clinical manifestation. We discuss the molecular and cellular mechanisms potentially involved in IPF development, as well as the morphological changes observed in lung biopsies and high-resolution computed tomography (HRCT) images. Finally, we summarize the existing treatment options. Key words: Idiopathic pulmonary fibrosis, Lung biopsy, HRCT, Antifibrotic therapy, Lung transplantation.
See more in PubMed
Plantier L, Cazes A, Dinh-Xuan AT, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev. 2018;27(147):170062. doi: 10.1183/16000617.0062-2017. PubMed DOI PMC
Kreuter M, Picker N, Schwarzkopf L, Baumann S, Cerani A, Postema R, Maywald U, Dittmar A, Langley J, Patel H. Epidemiology, healthcare utilization, and related costs among patients with IPF: Results from a German claims database analysis. Respir Res. 2022;23:62. doi: 10.1186/s12931-022-01976-0. PubMed DOI PMC
Kolek V. Epidemiology of cryptogenic fibrosing alveolitis in Moravia and Silesia in the 1981–1990. L’internista. 1995;3:105–108. PubMed
Bagnato G, Harari S. Cellular interactions in the pathogenesis of interstitial lung diseases. Eur Respir Rev. 2015;24(135):102–114. doi: 10.1183/09059180.00003214. PubMed DOI PMC
Hyldgaard C, Hilberg O, Bendstrup E. How does comorbidity influence survival in idiopathic pulmonary fibrosis? Respir Med. 2014;108(4):647–653. doi: 10.1016/j.rmed.2014.01.008. PubMed DOI
Chlumský J, Stehlík L, Šterclová M, Smetanová J, Zindr O. Exercise Tolerance in Patients with Idiopathic Pulmonary Fibrosis, Effect of Supplemental Oxygen. Physiol Res. 2022;71:317–321. doi: 10.33549/physiolres.934764. PubMed DOI PMC
Rajagopal K, Bryant AJ, Sahay S, Wareing N, Zhou Y, Pandit LM, Karmouty-Quintana H. Idiopathic pulmonary fibrosis and pulmonary hypertension: Heracles meets the Hydra. Br J Pharmacol. 2021;178(1):172–186. doi: 10.1111/bph.15036. PubMed DOI PMC
Quinn C, Wisse A, Manns ST. Clinical course and management of idiopathic pulmonary fibrosis. Multidiscip Respir Med. 2019;14:35. https://doi.org/10.1186/s40248-019-0197-0, https://doi.org/10.4081/mrm.2019.484. PubMed DOI PMC
Kreuter M, Swigris J, Pittrow D, Geier S, Klotsche J, Prasse A, Wirtz H, Koschel D, Andreas S, Claussen M, Grohé C, Wilkens H, Hagmeyer L, Skowasch D, Meyer JF, Kirschner J, Gläser S, Herth FJF, Welte T, Neurohr C, Schwaiblmair M, Held M, Bahmer T, Frankenberger M, Behr J. Health related quality of life in patients with idiopathic pulmonary fibrosis in clinical practice: insights-IPF registry. Respir Res. 2017;18(1):139. doi: 10.1186/s12931-017-0621-y. PubMed DOI PMC
Collard HR, Ryerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, Lee JS, Maher TM, Wells AU, Antoniou KM, Behr J, Brown KK, Cottin V, Flaherty KR, Fukuoka J, Hansell DM, Johkoh T, Kaminski N, Kim DS, Kolb M, Lynch DA, Myers JL, Raghu G, Richeldi L, Taniguchi H, Martinez FJ. Acute exacerbation of idiopathic pulmonary fibrosis. An International Working Group Report. Am J Respir Crit Care Med. 2016;194(3):265–275. doi: 10.1164/rccm.201604-0801CI. PubMed DOI
Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Jr, Kondoh Y, Myers J, Müller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schünemann HJ. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824. doi: 10.1164/rccm.2009-040GL. PubMed DOI PMC
Wuyts WA, Wijsenbeek M, Bondue B, Bouros D, Bresser P, Robalo Cordeiro C, Hilberg O, Magnusson J, Manali ED, Morais A, Papiris S, Shaker S, Veltkamp M, Bendstrup E. Idiopathic pulmonary fibrosis: best practice in monitoring and managing a relentless fibrotic disease. Respiration. 2020;99(1):73–82. doi: 10.1159/000504763. PubMed DOI PMC
Schiza SE, Bouloukaki I, Bolaki M, Antoniou KM. Obstructive sleep apnea in pulmonary fibrosis. Curr Opin Pulm Med. 2020;26(5):443–448. doi: 10.1097/MCP.0000000000000697. PubMed DOI
Wang D, Ma Y, Tong X, Zhang Y, Fan H. Diabetes mellitus contributes to idiopathic pulmonary fibrosis: a review from clinical appearance to possible pathogenesis. Front Public Health. 2020;8:196. doi: 10.3389/fpubh.2020.00196. PubMed DOI PMC
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 2021;78(5):2031–2057. doi: 10.1007/s00018-020-03693-7. PubMed DOI PMC
Luppi F, Kalluri M, Faverio P, Kreuter M, Ferrara G. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res. 2021;22(1):109. doi: 10.1186/s12931-021-01711-1. PubMed DOI PMC
He C, Carter AB. C(C)Learing the Role of Chemokines in Pulmonary Fibrosis. Am J Respir Cell Mol Biol. 2020;62(5):546–547. doi: 10.1165/rcmb.2020-0017ED. PubMed DOI PMC
Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res. 2018;19(1):32. doi: 10.1186/s12931-018-0730-2. PubMed DOI PMC
Ye Z, Hu Y. TGF-β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review) Int J Mol Med. 2021;48(1):132. doi: 10.3892/ijmm.2021.4965. PubMed DOI PMC
Epstein Shochet G, Brook E, Bardenstein-Wald B, Shitrit D. TGF-β pathway activation by idiopathic pulmonary fibrosis (IPF) fibroblast derived soluble factors is mediated by IL-6 trans-signaling. Respir Res. 2020;21(1):56. doi: 10.1186/s12931-020-1319-0. PubMed DOI PMC
Effendi WI, Nagano T. A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. Int J Mol Sci. 2023;24(5):4428. doi: 10.3390/ijms24054428. PubMed DOI PMC
Yang Z, Xie H, He D, Li L. Infiltrating macrophages increase RCC epithelial mesenchymal transition (EMT) and stem cell-like populations via AKT and mTOR signaling. Oncotarget. 2016;7(28):44478–44491. doi: 10.18632/oncotarget.9873. PubMed DOI PMC
Wang Y, Wei J, Deng H, Zheng L, Yang H, Lv X. The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants (Basel) 2022;11(9):1685. doi: 10.3390/antiox11091685. Published 2022 Aug 29. PubMed DOI PMC
Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C, Gabrielli A, Sanduzzi A, Avvedimento EV. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One. 2010;5(11):e14003. doi: 10.1371/journal.pone.0014003. PubMed DOI PMC
Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol. 2020;33:101426. doi: 10.1016/j.redox.2020.101426. PubMed DOI PMC
Chung KP, Hsu CL, Fan LC, Huang Z, Bhatia D, Chen YJ, Hisata S, Cho SJ, Nakahira K, Imamura M, Choi ME, Yu CJ, Cloonan SM, Choi AMK. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019;10(1):3390. doi: 10.1038/s41467-019-11327-1. PubMed DOI PMC
Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–2664. doi: 10.1172/JCI26373. PubMed DOI PMC
Maitra M, Wang Y, Gerard RD, Mendelson CR, Garcia CK. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to protein instability and endoplasmic reticulum stress. J Biol Chem. 2010;285(29):22103–22113. doi: 10.1074/jbc.M110.121467. PubMed DOI PMC
Yamaguchi M, Hirai S, Tanaka Y, Sumi T, Miyajima M, Mishina T, Yamada G, Otsuka M, Hasegawa T, Kojima T, Niki T, Watanabe A, Takahashi H, Sakuma Y. Fibroblastic foci, covered with alveolar epithelia exhibiting epithelial-mesenchymal transition, destroy alveolar septa by disrupting blood flow in idiopathic pulmonary fibrosis. Lab Invest. 2017;97(3):232–242. doi: 10.1038/labinvest.2016.135. PubMed DOI
Schraufstatter IU, Zhao M, Khaldoyanidi SK, Discipio RG. The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum. Immunology. 2012;135(4):287–298. doi: 10.1111/j.1365-2567.2011.03541.x. PubMed DOI PMC
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585–600. doi: 10.1165/rcmb.2015-0020TR. PubMed DOI PMC
Zhao YL, Zhu RT, Sun YL. Epithelial-mesenchymal transition in liver fibrosis. Biomed Rep. 2016;4(3):269–274. doi: 10.3892/br.2016.578. PubMed DOI PMC
Choi SH, Hong ZY, Nam JK, Lee HJ, Jang J, Yoo RJ, Lee YJ, Lee CY, Kim KH, Park S, Ji YH, Lee YS, Cho J, Lee YJ. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin Cancer Res. 2015;21(16):3716–3726. doi: 10.1158/1078-0432.CCR-14-3193. PubMed DOI
Jandl K, Kwapiszewska G. Stiffness of the extracellular matrix: a regulator of prostaglandins in pulmonary fibrosis? Am J Respir Cell Mol Biol. 2020;63(6):721–722. doi: 10.1165/rcmb.2020-0398ED. PubMed DOI PMC
Michalski JE, Schwartz DA. Genetic risk factors for idiopathic pulmonary fibrosis: insights into immunopathogenesis. J Inflamm Res. 2021;13:1305–1318. doi: 10.2147/JIR.S280958. PubMed DOI PMC
Romero Y, Bueno M, Ramirez R, Álvarez D, Sembrat JC, Goncharova EA, Rojas M, Selman M, Mora AL, Pardo A. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell. 2016;15(6):1103–1112. doi: 10.1111/acel.12514. PubMed DOI PMC
Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M, Lin S, Huang L, Chung EJ, Citrin DE, Wang Y, Hauer-Jensen M, Zhou D, Meng A. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys. 2017;99(2):353–361. doi: 10.1016/j.ijrobp.2017.02.216. PubMed DOI PMC
Kreuter M, Ehlers-Tenenbaum S, Palmowski K, Bruhwyler J, Oltmanns U, Muley T, et al. Impact of comorbidities on mortality in patients with idiopathic pulmonary fibrosis. PLoS ONE. 2016;11:e0151425. doi: 10.1371/journal.pone.0151425. PubMed DOI PMC
Smith ML. The histologic diagnosis of usual interstitial pneumonia of idiopathic pulmonary fibrosis. Where we are and where we need to go. Mod Pathol. 2022;35(Suppl 1):8–14. doi: 10.1038/s41379-021-00889-40. PubMed DOI PMC
Yamaguchi M, Hirai S, Tanaka Y, et al. Fibroblastic foci, covered with alveolar epithelia exhibiting epithelial-mesenchymal transition, destroy alveolar septa by disrupting blood flow in idiopathic pulmonary fibrosis. Lab Invest. 2017;97(3):232–242. doi: 10.1038/labinvest.2016.135. PubMed DOI
Mäkelä K, Mäyränpää MI, Sihvo HK, Bergman P, Sutinen E, Ollila H, Kaarteenaho R, Myllärniemi M. Artificial intelligence identifies inflammation and confirms fibroblast foci as prognostic tissue biomarkers in idiopathic pulmonary fibrosis. Hum Pathol. 2021;107:58–68. doi: 10.1016/j.humpath.2020.10.008. PubMed DOI
Vyšehradský R. Idiopathic interstitial pneumonia. In: Vyšehradský R, editor. Diffuse parenchymal lung diseases (in Slovak) Grada Slovakia; Bratislava: 2023. pp. 15–54.
Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(5):1434–1445. doi: 10.1183/09031936.00174914. PubMed DOI PMC
Saito S, Alkhatib A, Kolls JK, Kondoh Y, Lasky JA. Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fibrosis (IPF) J Thorac Dis. 2019;11(Suppl 14):1740–S1754. doi: 10.21037/jtd.2019.04.62. PubMed DOI PMC
Kolb M, Bonella F, Wollin L. Therapeutic targets in idiopathic pulmonary fibrosis. Respir Med. 2017;131:49–57. doi: 10.1016/j.rmed.2017.07.062. PubMed DOI
Glass DS, Grossfeld D, Renna HA, et al. Idiopathic pulmonary fibrosis: Current and future treatment. Clin Respir J. 2022;16(2):84–96. doi: 10.1111/crj.13466. PubMed DOI PMC
Weill D, Benden C, Corris PA, Dark JH, Davis RD, Keshavjee S, Lederer DJ, Mulligan MJ, Patterson GA, Singer LG, Snell GI, Verleden GM, Zamora MR, Glanville AR. A consensus document for the selection of lung transplant candidates: 2014--an update from the Pulmonary Transplantation Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2015;34(1):1–15. doi: 10.1016/j.healun.2014.06.014. PubMed DOI
George PM, Patterson CM, Reed AK, Thillai M. Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med. 2019;7(3):271–282. doi: 10.1016/S2213-2600(18)30502-2. PubMed DOI
Li D, Liu Y, Wang B. Single versus bilateral lung transplantation in idiopathic pulmonary fibrosis: A systematic review and meta-analysis. PLoS One. 2020;15(5):e0233732. doi: 10.1371/journal.pone.0233732. PubMed DOI PMC
Glassberg MK, Minkiewicz J, Toonke RL, et al. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER) A phase I safety clinical trial. Chest. 2017;151:971–981. doi: 10.1016/j.chest.2016.10.061. PubMed DOI PMC
Fishman JE, Kim GJ, Kyeong NY, Goldin JG, Glassberg MK. Intravenous stem cell dose and changes in quantitative lung fibrosis and DLCO in the AETHER trial: A pilot study. Eur Rev Med Pharmacol Sci. 2019;23:7568–7572. doi: 10.26355/eurrev_201909_18877. PubMed DOI