Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients

. 2024 Oct 07 ; 221 (10) : . [epub] 20240924

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39316018

Grantová podpora
Strasbourg University
EQU201903007798 French Foundation for Medical Research
Rockefeller University
Meyer Foundation
European Union
RC08061819 Italian Ministry of Health
ANR-10-IAHU-01 Agence Nationale de la Recherche
08061821 San Matteo Hospital
Imagine Institute
R01 AI163029 NIAID NIH HHS - United States
LX22N-PO5103 National Institute of Virology and Bacteriology
UL1 TR001866 NCATS NIH HHS - United States
R01 AI124690 NIAID NIH HHS - United States
Battersea & Bowery Advisory Group
R01AI163029 NIH HHS - United States
Grandir - Fonds de solidarité pour l'enfance
Howard Hughes Medical Institute - United States
Square Foundation
PRI 7782 Strasbourg University Hospital
NU22-05-00659 Czech Ministry of Health
Fondation du Souffle
SCOR Corporate Foundation for Science
St. Giles Foundation
UMR_S 1109 Institut National de la Santé et de la Recherche Médicale
Bettencourt-Schueller Foundation
PHRCN-17-0382 Ministry of Health
Paris Cité University
JPB Foundation
MESRI-COVID-19 French Ministry of Higher Education, Research, and Innovation
Stavros Niarchos Foundation
Fisher Center for Alzheimer's Research Foundation

Tick-borne encephalitis (TBE) virus (TBEV) is transmitted to humans via tick bites. Infection is benign in >90% of the cases but can cause mild (<5%), moderate (<4%), or severe (<1%) encephalitis. We show here that ∼10% of patients hospitalized for severe TBE in cohorts from Austria, Czech Republic, and France carry auto-Abs neutralizing IFN-α2, -β, and/or -ω at the onset of disease, contrasting with only ∼1% of patients with moderate and mild TBE. These auto-Abs were found in two of eight patients who died and none of 13 with silent infection. The odds ratios (OR) for severe TBE in individuals with these auto-Abs relative to those without them in the general population were 4.9 (95% CI: 1.5-15.9, P < 0.0001) for the neutralization of only 100 pg/ml IFN-α2 and/or -ω, and 20.8 (95% CI: 4.5-97.4, P < 0.0001) for the neutralization of 10 ng/ml IFN-α2 and -ω. Auto-Abs neutralizing type I IFNs accounted for ∼10% of severe TBE cases in these three European cohorts.

CHU de Strasbourg Service des Maladies Infectieuses et Tropicales Strasbourg France

Clinical Immunology Department Assistance Publique Hôpitaux de Paris Saint Louis Hospital Paris France

Clinical Research Department Hôpitaux Civils de Colmar Colmar France

Department of Children's Infectious Diseases University Hospital and Faculty of Medicine Masaryk University Brno Czech Republic

Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic

Department of Infectious Diseases University Hospital Brno and Faculty of Medicine Masaryk University Brno Czech Republic

Department of Pediatrics and Neonatology F Tappeiner Hospital Merano Italy

Department of Pediatrics Necker Hospital for Sick Children AP HP Paris France

Howard Hughes Medical Institute New York NY USA

Imagine Institute Paris Cité University Paris France

Infectious Disease Unit Provincial Hospital of Bolzano Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität Bolzano Italy

Infectious Diseases Department Hôpitaux Civils Colmar France

Institut de Virologie Strasbourg University Hospital Strasbourg University INSERM Unité Mixte de Recherche S1109 Strasbourg France

Institute for Research in Biomedicine Università della Svizzera italiana Bellinzona Switzerland

Institute of Parasitology Biology Centre of the Czech Academy of Science České Budějovice Czech Republic

Laboratory of Emerging Viral Diseases Veterinary Research Institute Brno Czech Republic

Laboratory of Human Genetics of Infectious Diseases Necker Branch Institut National de la Santé et de la Recherche Médicale U1163 Necker Hospital for Sick Children Paris France

Laboratory of Microbiology and Virology SABES ASDAA Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität Bolzano Italy

Laboratory of Virology and Infectious Disease The Rockefeller University New York NY USA

Medical University of Vienna Center for Virology Vienna Austria

Neonatal Intensive Care Unit San Matteo Research Hospital Pavia Italy

Pediatric Hematology Immunology and Rheumatology Unit Necker Hospital for Sick Children AP HP Paris France

School of Life Sciences Swiss Federal Institute of Technology Lausanne Switzerland

St Giles Laboratory of Human Genetics of Infectious Diseases Rockefeller Branch Rockefeller University New York NY USA

Zobrazit více v PubMed

Ackermann-Gäumann, R., Eyer C., Vock M., Gowland P., Tinguely C., Leib S.L., Bori M., Buser A., Fontana S., Thierbach J., et al. . 2023. Prevalence of anti-tick-borne encephalitis virus (TBEV) antibodies in Swiss blood donors in 2014-2015. Blood Transfus. 21:100–109. 10.2450/2022.0099-22 PubMed DOI PMC

Agudelo, M., Palus M., Keeffe J.R., Bianchini F., Svoboda P., Salát J., Peace A., Gazumyan A., Cipolla M., Kapoor T., et al. . 2021. Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J. Exp. Med. 218:e20210236. 10.1084/jem.20210236 PubMed DOI PMC

Alotaibi, F., Alharbi N.K., Rosen L.B., Asiri A.Y., Assiri A.M., Balkhy H.H., Al Jeraisy M., Mandourah Y., AlJohani S., Al Harbi S., et al. . 2023. Type I interferon autoantibodies in hospitalized patients with Middle East respiratory syndrome and association with outcomes and treatment effect of interferon beta-1b in MIRACLE clinical trial. Influenza Other Respir. Viruses. 17:e13116. 10.1111/irv.13116 PubMed DOI PMC

Bastard, P., Gervais A., Le Voyer T., Philippot Q., Cobat A., Rosain J., Jouanguy E., Abel L., Zhang S.-Y., Zhang Q., et al. . 2024a. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol. Rev. 322:98–112. 10.1111/imr.13304 PubMed DOI PMC

Bastard, P., Gervais A., Le Voyer T., Rosain J., Philippot Q., Manry J., Michailidis E., Hoffmann H.H., Eto S., Garcia-Prat M., et al. . 2021a. Autoantibodies neutralizing type I IFNs are present in ∼4% of uninfected individuals over 70 years old and account for ∼20% of COVID-19 deaths. Sci. Immunol. 6:eabl4340. 10.1126/sciimmunol.abl4340 PubMed DOI PMC

Bastard, P., Gervais A., Taniguchi M., Saare L., Särekannu K., Le Voyer T., Philippot Q., Rosain J., Bizien L., Asano T., et al. . 2024b. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J. Exp. Med. 221:e20231353. 10.1084/jem.20231353 PubMed DOI PMC

Bastard, P., Orlova E., Sozaeva L., Lévy R., James A., Schmitt M.M., Ochoa S., Kareva M., Rodina Y., Gervais A., et al. . 2021b. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 218:e20210554. 10.1084/jem.20210554 PubMed DOI PMC

Bastard, P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., et al. . 2020. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370:eabd4585. 10.1126/science.abd4585 PubMed DOI PMC

Bastard, P., Vazquez S.E., Liu J., Laurie M.T., Wang C.Y., Gervais A., Le Voyer T., Bizien L., Zamecnik C., Philippot Q., et al. . 2023. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci. Immunol. 8:eabp8966. 10.1126/sciimmunol.abp8966 PubMed DOI PMC

Beck, C., Desprès P., Paulous S., Vanhomwegen J., Lowenski S., Nowotny N., Durand B., Garnier A., Blaise-Boisseau S., Guitton E., et al. . 2015. A high-performance multiplex immunoassay for serodiagnosis of flavivirus-associated neurological diseases in horses. Biomed. Res. Int. 2015:678084. 10.1155/2015/678084 PubMed DOI PMC

Best, S.M., Morris K.L., Shannon J.G., Robertson S.J., Mitzel D.N., Park G.S., Boer E., Wolfinbarger J.B., and Bloom M.E.. 2005. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J. Virol. 79:12828–12839. 10.1128/JVI.79.20.12828-12839.2005 PubMed DOI PMC

Bílý, T., Palus M., Eyer L., Elsterová J., Vancová M., and Růžek D.. 2015. Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci. Rep. 5:10745. 10.1038/srep10745 PubMed DOI PMC

Bogovic, P., Lotric-Furlan S., and Strle F.. 2010. What tick-borne encephalitis may look like: Clinical signs and symptoms. Trav. Med. Infect. Dis. 8:246–250. 10.1016/j.tmaid.2010.05.011 PubMed DOI

Bogovic, P., and Strle F.. 2015. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 3:430–441. 10.12998/wjcc.v3.i5.430 PubMed DOI PMC

Chang, S.E., Feng A., Meng W., Apostolidis S.A., Mack E., Artandi M., Barman L., Bennett K., Chakraborty S., Chang I., et al. . 2021. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 12:5417. 10.1038/s41467-021-25509-3 PubMed DOI PMC

Dobler, G. 2010. Zoonotic tick-borne flaviviruses. Vet. Microbiol. 140:221–228. 10.1016/j.vetmic.2009.08.024 PubMed DOI

Dumpis, U., Crook D., and Oksi J.. 1999. Tick-borne encephalitis. Clin. Infect. Dis. 28:882–890. 10.1086/515195 PubMed DOI

Elbaz, M., Gadoth A., Shepshelovich D., Shasha D., Rudoler N., and Paran Y.. 2022. Systematic review and meta-analysis of foodborne tick-borne encephalitis, Europe, 1980-2021. Emerg. Infect. Dis. 28:1945–1954. 10.3201/eid2810.220498 PubMed DOI PMC

Gervais, A., Le Floc’h C., Le Voyer T., Bizien L., Bohlen J., Celmeli F., Al-Qureshah F., Masson C., Rosain J., Chbihi M., et al. . 2024. A sensitive assay for measuring whole-blood responses to type I IFNsA sensitive assay for measuring whole-blood responses to type I IFNs. Proc. Natl. Acad. Sci. USA. In press. PubMed PMC

Gervais, A., Rovida F., Avanzini M.A., Croce S., Marchal A., Lin S.C., Ferrari A., Thorball C.W., Constant O., Le Voyer T., et al. . 2023. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in approximately 40% of patients. J. Exp. Med. 220:e20230661. 10.1084/jem.20230661 PubMed DOI PMC

Goonawardane, N., Upstone L., Harris M., and Jones I.M.. 2022. Identification of host factors differentially induced by clinically diverse strains of tick-borne encephalitis virus. J. Virol. 96:e0081822. 10.1128/jvi.00818-22 PubMed DOI PMC

Groen, K., Kuratli R., Vasou A., Huber M., Hughes D.J., and Hale B.G.. 2024. Highly-sensitive reporter cell line for detection of interferon types I-III and their neutralization by antibodies. bioRxiv. 10.1101/2024.06.18.599537 (Preprint posted June 22, 2024). DOI

Gustafson, R., Svenungsson B., Forsgren M., Gardulf A., and Granström M.. 1992. Two-year survey of the incidence of Lyme borreliosis and tick-borne encephalitis in a high-risk population in Sweden. Eur. J. Clin. Microbiol. Infect. Dis. 11:894–900. 10.1007/BF01962369 PubMed DOI

Hale, B.G. 2023. Autoantibodies targeting type I interferons: Prevalence, mechanisms of induction, and association with viral disease susceptibility. Eur. J. Immunol. 53:e2250164. 10.1002/eji.202250164 PubMed DOI

Haviernik, J., Eyer L., Yoshii K., Kobayashi S., Cerny J., Nougairède A., Driouich J.-S., Volf J., Palus M., de Lamballerie X., et al. . 2021. Development and characterization of recombinant tick-borne encephalitis virus expressing mCherry reporter protein: A new tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays. Antivir. Res. 185:104968. 10.1016/j.antiviral.2020.104968 PubMed DOI

Heinz, F.X., Stiasny K., Holzmann H., Kundi M., Sixl W., Wenk M., Kainz W., Essl A., and Kunz C.. 2015. Emergence of tick-borne encephalitis in new endemic areas in Austria: 42 years of surveillance. Euro Surveill. 20:9–16. 10.2807/1560-7917.ES2015.20.13.21077 PubMed DOI

Ignatieva, E.V., Igoshin A.V., and Yudin N.S.. 2017. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection. BMC Evol. Biol. 17:259. 10.1186/s12862-017-1107-8 PubMed DOI PMC

Jorgačevski, J., and Potokar M.. 2023. Immune functions of astrocytes in viral neuroinfections. Int. J. Mol. Sci. 24:3514. 10.3390/ijms24043514 PubMed DOI PMC

Kaiser, R. 1999. The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994-98: A prospective study of 656 patients. Brain. 122:2067–2078. 10.1093/brain/122.11.2067 PubMed DOI

Kaiser, R. 2008. Tick-borne encephalitis. Infect. Dis. Clin. North Am. 22:561–575. 10.1016/j.idc.2008.03.013 PubMed DOI

Kaiser, R. 2012. Tick-borne encephalitis: Clinical findings and prognosis in adults. Wien. Med. Wochenschr. 162:239–243. 10.1007/s10354-012-0105-0 PubMed DOI

Le Voyer, T., Parent A.V., Liu X., Cederholm A., Gervais A., Rosain J., Nguyen T., Perez Lorenzo M., Rackaityte E., Rinchai D., et al. . 2023. Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency. Nature. 623:803–813. 10.1038/s41586-023-06717-x PubMed DOI PMC

Lindquist, L., and Vapalahti O.. 2008. Tick-borne encephalitis. Lancet. 371:1861–1871. 10.1016/S0140-6736(08)60800-4 PubMed DOI

Lindqvist, R., Upadhyay A., and Överby A.K.. 2018. Tick-borne flaviviruses and the type I interferon response. Viruses. 10:340. 10.3390/v10070340 PubMed DOI PMC

Mansfield, K.L., Johnson N., Phipps L.P., Stephenson J.R., Fooks A.R., and Solomon T.. 2009. Tick-borne encephalitis virus—a review of an emerging zoonosis. J. Gen. Virol. 90:1781–1794. 10.1099/vir.0.011437-0 PubMed DOI

Palus, M., Bílý T., Elsterová J., Langhansová H., Salát J., Vancová M., and Růžek D.. 2014. Infection and injury of human astrocytes by tick-borne encephalitis virus. J. Gen. Virol. 95:2411–2426. 10.1099/vir.0.068411-0 PubMed DOI

Parfut, A., Laugel E., Baer S., Gonzalez G., Hansmann Y., Wendling M.J., Fafi-Kremer S., and Velay A.. 2023. Tick-borne encephalitis in pediatrics: An often overlooked diagnosis. Infect. Dis. Now. 53:104645. 10.1016/j.idnow.2023.01.005 PubMed DOI

Pilz, A., Erber W., and Schmitt H.-J.. 2023. Vaccine uptake in 20 countries in Europe 2020: Focus on tick-borne encephalitis (TBE). Ticks Tick Borne Dis. 14:102059. 10.1016/j.ttbdis.2022.102059 PubMed DOI

Pokorna Formanova, P., Palus M., Salat J., Hönig V., Stefanik M., Svoboda P., and Ruzek D.. 2019. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J. Neuroinflammation. 16:205. 10.1186/s12974-019-1596-z PubMed DOI PMC

Potokar, M., Korva M., Jorgačevski J., Avšič-Županc T., and Zorec R.. 2014. Tick-borne encephalitis virus infects rat astrocytes but does not affect their viability. PLoS One. 9:e86219. 10.1371/journal.pone.0086219 PubMed DOI PMC

Puel, A., Picard C., Lorrot M., Pons C., Chrabieh M., Lorenzo L., Mamani-Matsuda M., Jouanguy E., Gendrel D., and Casanova J.-L.. 2008. Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J. Immunol. 180:647–654. 10.4049/jimmunol.180.1.647 PubMed DOI

Puel, A., Bastard P., Bustamante J., and Casanova J.L.. 2022. Human autoantibodies underlying infectious diseases. J. Exp. Med. 219:e20211387. 10.1084/jem.20211387 PubMed DOI PMC

Radzišauskienė, D., Urbonienė J., Kaubrys G., Andruškevičius S., Jatužis D., Matulytė E., and Žvirblytė-Skrebutienė K.. 2020. The epidemiology, clinical presentation, and predictors of severe tick-borne encephalitis in Lithuania, a highly endemic country: A retrospective study of 1040 patients. PLoS One. 15:e0241587. 10.1371/journal.pone.0241587 PubMed DOI PMC

Ruzek, D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. . 2019. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 164:23–51. 10.1016/j.antiviral.2019.01.014 PubMed DOI

Schoggins, J.W., Wilson S.J., Panis M., Murphy M.Y., Jones C.T., Bieniasz P., and Rice C.M.. 2011. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 472:481–485. 10.1038/nature09907 PubMed DOI PMC

Schultze, D., Dollenmaier G., Rohner A., Guidi T., and Cassinotti P.. 2007. Benefit of detecting tick-borne encephalitis viremia in the first phase of illness. J. Clin. Virol. 38:172–175. 10.1016/j.jcv.2006.11.008 PubMed DOI

Seligman, S.J. 2014. Risk groups for yellow fever vaccine-associated viscerotropic disease (YEL-AVD). Vaccine. 32:5769–5775. 10.1016/j.vaccine.2014.08.051 PubMed DOI

Septfons, A., Emma R., Benezet L., Velay A., Zilliox L., Baldinger L., Gonzalez G., Figoni J., de Valk H., Deffontaines G., et al. . 2023. Seroprevalence for Borrelia burgdorferi sensu lato and tick-borne encephalitis virus antibodies and associated risk factors among forestry workers in northern France, 2019 to 2020. Euro Surveill. 28:2200961. 10.2807/1560-7917.ES.2023.28.32.2200961 PubMed DOI PMC

Shaw, E.R., Rosen L.B., Cheng A., Dobbs K., Delmonte O.M., Ferré E.M.N., Schmitt M.M., Imberti L., Quaresima V., Lionakis M.S., et al. . 2022. Temporal dynamics of anti-type 1 interferon autoantibodies in patients with coronavirus disease 2019. Clin. Infect. Dis. 75:e1192–e1194. 10.1093/cid/ciab1002 PubMed DOI PMC

Smithburn, K.C., Hughes T.P., Burke A.W., and Paul J.H.. 1940. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. s1-20:471–492. 10.4269/ajtmh.1940.s1-20.471 DOI

Sonja, F., Nina K.M., Irene A.A., Kevin G., Roger K., Marie L., Christian W.T., Enos B., Paraskevas F., Karoline L., et al. . 2024. Longitudinal analysis over decades reveals the development and immune implications of type I interferon autoantibodies in an aging population. medRxiv. 10.1101/2024.02.27.24303363123456 (Preprint posted March 06, 2024). DOI

Steels, S., Van Elslande J., De Munter P., Bossuyt X., Imbrechts M., Dillaerts D., Meyts I., Geukens N., Wauters E., Vermeersch P., et al. . 2022. Transient increase of pre-existing anti-IFN-α2 antibodies induced by SARS-CoV-2 infection. J. Clin. Immunol. 42:742–745. 10.1007/s10875-022-01235-3 PubMed DOI PMC

Stiasny, K., Aberle J.H., Chmelik V., Karrer U., Holzmann H., and Heinz F.X.. 2012. Quantitative determination of IgM antibodies reduces the pitfalls in the serodiagnosis of tick-borne encephalitis. J. Clin. Virol. 54:115–120. 10.1016/j.jcv.2012.02.016 PubMed DOI

Stone, E.T., and Pinto A.K.. 2023. T cells in tick-borne flavivirus encephalitis: A review of current paradigms in protection and disease pathology. Viruses. 15:958. 10.3390/v15040958 PubMed DOI PMC

Su, H.C., Jing H., Zhang Y., and Casanova J.L.. 2023. Interfering with interferons: A critical mechanism for critical COVID-19 pneumonia. Annu. Rev. Immunol. 41:561–585. 10.1146/annurev-immunol-101921-050835 PubMed DOI

Werme, K., Wigerius M., and Johansson M.. 2008. Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell. Microbiol. 10:696–712. 10.1111/j.1462-5822.2007.01076.x PubMed DOI

Yoshii, K. 2019. Epidemiology and pathological mechanisms of tick-borne encephalitis. J. Vet. Med. Sci. 81:343–347. 10.1292/jvms.18-0373 PubMed DOI PMC

Zavadska, D., Anca I., André F., Bakir M., Chlibek R., Cižman M., Ivaskeviciene I., Mangarov A., Mészner Z., Pokorn M., et al. . 2013. Recommendations for tick-borne encephalitis vaccination from the central European vaccination awareness group (CEVAG). Hum. Vaccin. Immunother. 9:362–374. 10.4161/hv.22766 PubMed DOI PMC

Zhang, Q., Pizzorno A., Miorin L., Bastard P., Gervais A., Le Voyer T., Bizien L., Manry J., Rosain J., Philippot Q., et al. . 2022. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J. Exp. Med. 219:e20220514. 10.1084/jem.20220514 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...