Automated Production of [68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
DOI: 10.55776/KLI909
FWF Austrian Science Fund
PubMed
39339267
PubMed Central
PMC11435116
DOI
10.3390/pharmaceutics16091231
PII: pharmaceutics16091231
Knihovny.cz E-resources
- Keywords
- PET, desferrioxamine B, gallium-68, imaging, infection, validation,
- Publication type
- Journal Article MeSH
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B-a radiolabelled siderophore-shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this report, we present data for automated production of [68Ga]Ga-desferrioxamine B on two different cassette-based synthesis modules (Modular-Lab PharmTracer and GRP 3V) utilising commercially obtainable cassettes together with a licensed 68Ge/68Ga radionuclide generator. Methods: Quality control, including the determination of radiochemical purity, as well as a system suitability test, was set up via RP-HPLC on a C18 column. The two described production processes use an acetic acid/acetate buffer system with ascorbic acid as a radical scavenger for radiolabelling, yielding ready-to-use formulations with sufficient activity yield. Results: Batch data analysis demonstrated radiochemical purity of >95% by RP-HPLC combined with ITLC and excellent stability up to 2 h after synthesis. Specifications for routine production were set up and validated with four masterbatches for each synthesis module. Conclusions: Based on this study, an academic clinical trial for imaging of bacterial infection was initiated. Both described synthesis methods enable automated production of [68Ga]Ga-desferrioxamine B in-house with high reproducibility for clinical application.
Department of Nuclear Medicine Medical University Innsbruck Anichstrasse 35 A 6020 Innsbruck Austria
Institute of Molecular Biology Biocenter Medical University of Innsbruck A 6020 Innsbruck Austria
Medical Faculty Johannes Kepler University Linz Altenberger Strasse 69 A 4040 Linz Austria
See more in PubMed
Haque M., Sartelli M., McKimm J., Abu Bakar M. Health Care-Associated Infections—An Overview. Infect. Drug Resist. 2018;11:2321–2333. doi: 10.2147/IDR.S177247. PubMed DOI PMC
Miller W.R., Arias C.A. ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics. Nat. Rev. Microbiol. 2024;22:598–616. doi: 10.1038/s41579-024-01054-w. PubMed DOI
Gerace E., Mancuso G., Midiri A., Poidomani S., Zummo S., Biondo C. Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections. Pathogens. 2022;11:663. doi: 10.3390/pathogens11060663. PubMed DOI PMC
Lawal I., Zeevaart J., Ebenhan T., Ankrah A., Vorster M., Kruger H.G., Govender T., Sathekge M. Metabolic Imaging of Infection. J. Nucl. Med. 2017;58:1727–1732. doi: 10.2967/jnumed.117.191635. PubMed DOI
Sollini M., Lauri C., Boni R., Lazzeri E., Erba P.A., Signore A. Current Status of Molecular Imaging in Infections. Curr. Pharm. Des. 2018;24:754–771. doi: 10.2174/1381612824666180110103348. PubMed DOI
Alberto S., Ordonez A.A., Arjun C., Aulakh G.K., Beziere N., Dadachova E., Ebenhan T., Granados U., Korde A., Jalilian A., et al. The Development and Validation of Radiopharmaceuticals Targeting Bacterial Infection. J. Nucl. Med. 2023;64:1676–1682. doi: 10.2967/jnumed.123.265906. PubMed DOI PMC
Hider R.C., Kong X. Chemistry and Biology of Siderophores. Nat. Prod. Rep. 2010;27:637–657. doi: 10.1039/b906679a. PubMed DOI
Skaar E.P. The Battle for Iron between Bacterial Pathogens and Their Vertebrate Hosts. PLoS Pathog. 2010;6:e1000949. doi: 10.1371/journal.ppat.1000949. PubMed DOI PMC
Wandersman C., Delepelaire P. Bacterial Iron Sources: From Siderophores to Hemophores. Annu. Rev. Microbiol. 2004;58:611–647. doi: 10.1146/annurev.micro.58.030603.123811. PubMed DOI
Fadeev E.A., Luo M., Groves J.T. Synthesis, Structure, and Molecular Dynamics of Gallium Complexes of Schizokinen and the Amphiphilic Siderophore Acinetoferrin. J. Am. Chem. Soc. 2004;126:12065–12075. doi: 10.1021/ja048145j. PubMed DOI
Petrik M., Umlaufova E., Raclavsky V., Palyzova A., Havlicek V., Pfister J., Mair C., Novy Z., Popper M., Hajduch M., et al. 68Ga-Labelled Desferrioxamine-B for Bacterial Infection Imaging. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:372–382. doi: 10.1007/s00259-020-04948-y. PubMed DOI PMC
Misslinger M., Petrik M., Pfister J., Hubmann I., Bendova K., Decristoforo C., Haas H. Desferrioxamine B-Mediated Pre-Clinical In Vivo Imaging of Infection by the Mold Fungus Aspergillus Fumigatus. J. Fungi. 2021;7:734. doi: 10.3390/jof7090734. PubMed DOI PMC
Nelson B.J.B., Andersson J.D., Wuest F., Spreckelmeyer S. Good Practices for 68Ga Radiopharmaceutical Production. EJNMMI Radiopharm. Chem. 2022;7:27. doi: 10.1186/s41181-022-00180-1. PubMed DOI PMC
Kollaard R., Zorz A., Dabin J., Covens P., Cooke J., Crabbé M., Cunha L., Dowling A., Ginjaume M., McNamara L. Review of Extremity Dosimetry in Nuclear Medicine. J. Radiol. Prot. 2021;41:R60. doi: 10.1088/1361-6498/ac31a2. PubMed DOI
Boschi S., Malizia C., Lodi F. Overview and Perspectives on Automation Strategies in (68)Ga Radiopharmaceutical Preparations. Recent. Results Cancer Res. 2013;194:17–31. doi: 10.1007/978-3-642-27994-2_2. PubMed DOI
Korde A., Mikolajczak R., Kolenc P., Bouziotis P., Westin H., Lauritzen M., Koole M., Herth M.M., Bardiès M., Martins A.F., et al. Practical Considerations for Navigating the Regulatory Landscape of Non-Clinical Studies for Clinical Translation of Radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2022;7:18. doi: 10.1186/s41181-022-00168-x. PubMed DOI PMC
Gillings N., Hjelstuen O., Ballinger J., Behe M., Decristoforo C., Elsinga P., Ferrari V., Peitl P.K., Koziorowski J., Laverman P., et al. Guideline on Current Good Radiopharmacy Practice (CGRPP) for the Small-Scale Preparation of Radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2021;6:8. doi: 10.1186/s41181-021-00123-2. PubMed DOI PMC
European Pharmacopoeia . GALLIUM (68Ga) EDOTREOTIDE INJECTION. 01/2022:2482. 11th ed. EDQM Council of Europe; Strasbourg, France: 2022.
European Pharmacopoeia . GALLIUM (68Ga) PSMA-11 INJECTION. 04/2021:3044. 11th ed. EDQM Council of Europe; Strasbourg, France: 2021.
European Pharmacopoeia . DEFEROXAMINE MESILATE. 01/2018:0896. 11th ed. EDQM Council of Europe; Strasbourg, France: 2018.
Petrik M., Zhai C., Haas H., Decristoforo C. Siderophores for Molecular Imaging Applications. Clin. Transl. Imaging. 2017;5:15–27. doi: 10.1007/s40336-016-0211-x. PubMed DOI PMC
Ioppolo J.A., Caldwell D., Beiraghi O., Llano L., Blacker M., Valliant J.F., Berti P.J. 67Ga-Labeled Deferoxamine Derivatives for Imaging Bacterial Infection: Preparation and Screening of Functionalized Siderophore Complexes. Nucl. Med. Biol. 2017;52:32–41. doi: 10.1016/j.nucmedbio.2017.05.010. PubMed DOI
Petrik M., Umlaufova E., Raclavsky V., Palyzova A., Havlicek V., Haas H., Novy Z., Dolezal D., Hajduch M., Decristoforo C. Imaging of Pseudomonas Aeruginosa Infection with Ga-68 Labelled Pyoverdine for Positron Emission Tomography. Sci. Rep. 2018;8:15698. doi: 10.1038/s41598-018-33895-w. PubMed DOI PMC
Lepareur N. Cold Kit Labeling: The Future of 68Ga Radiopharmaceuticals? Front. Med. 2022;9:812050. doi: 10.3389/fmed.2022.812050. PubMed DOI PMC
Petrik M., Knetsch P.A., Knopp R., Imperato G., Ocak M., von Guggenberg E., Haubner R., Silbernagl R., Decristoforo C. Radiolabelling of Peptides for PET, SPECT and Therapeutic Applications Using a Fully Automated Disposable Cassette System. Nucl. Med. Commun. 2011;32:887–895. doi: 10.1097/MNM.0b013e3283497188. PubMed DOI
de Blois E., Sze Chan H., Naidoo C., Prince D., Krenning E.P., Breeman W.A.P. Characteristics of SnO2-Based 68Ge/68Ga Generator and Aspects of Radiolabelling DOTA-Peptides. Appl. Radiat. Isot. 2011;69:308–315. doi: 10.1016/j.apradiso.2010.11.015. PubMed DOI
Desferal—Summary of Product Characteristics 2018. [(accessed on 20 September 2024)]. Available online: https://www.hpra.ie/img/uploaded/swedocuments/LicenseSPC_PA0013-065-001_09072018160137.pdf.
Serdons K., Verbruggen A., Bormans G. The presence of ethanol in radiopharmaceutical injections. J. Nucl. Med. 2008;49:2071. doi: 10.2967/jnumed.108.057026. PubMed DOI