Metabolic adaptations of Escherichia coli to extended zinc exposure: insights into tricarboxylic acid cycle and trehalose synthesis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.03.1.01/0.0/0.0/16_025/0007314
ERDF "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.03.1.01/0.0/0.0/16_025/0007314)
CZ.03.1.01/0.0/0.0/16_025/0007314
ERDF "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.03.1.01/0.0/0.0/16_025/0007314)
CZ.03.1.01/0.0/0.0/16_025/0007314
ERDF "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.03.1.01/0.0/0.0/16_025/0007314)
CZ.03.1.01/0.0/0.0/16_025/0007314
ERDF "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.03.1.01/0.0/0.0/16_025/0007314)
CZ.03.1.01/0.0/0.0/16_025/0007314
ERDF "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.03.1.01/0.0/0.0/16_025/0007314)
CZ.03.1.01/0.0/0.0/16_025/0007314
ERDF "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.03.1.01/0.0/0.0/16_025/0007314)
CZ.03.1.01/0.0/0.0/16_025/0007314
ERDF "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.03.1.01/0.0/0.0/16_025/0007314)
PubMed
39354342
PubMed Central
PMC11443826
DOI
10.1186/s12866-024-03463-6
PII: 10.1186/s12866-024-03463-6
Knihovny.cz E-zdroje
- Klíčová slova
- Carbohydrate metabolism, Nanoparticles, Proteome, Transcriptome, Trehalose synthesis, Tricarboxylic acid cycle, Virulence, Zinc, Zinc oxide,
- MeSH
- citrátový cyklus * účinky léků MeSH
- Escherichia coli * metabolismus genetika účinky léků MeSH
- fyziologická adaptace MeSH
- metabolické sítě a dráhy účinky léků MeSH
- oxid zinečnatý metabolismus farmakologie MeSH
- oxidační stres MeSH
- proteiny z Escherichia coli metabolismus genetika MeSH
- proteomika MeSH
- regulace genové exprese u bakterií účinky léků MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- trehalosa * metabolismus MeSH
- zinek * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid zinečnatý MeSH
- proteiny z Escherichia coli MeSH
- trehalosa * MeSH
- zinek * MeSH
Balanced bacterial metabolism is essential for cell homeostasis and growth and can be impacted by various stress factors. In particular, bacteria exposed to metals, including the nanoparticle form, can significantly alter their metabolic processes. It is known that the extensive and intensive use of food and feed supplements, including zinc, in human and animal nutrition alters the intestinal microbiota and this may negatively impact the health of the host. This study examines the effects of zinc (zinc oxide and zinc oxide nanoparticles) on key metabolic pathways of Escherichia coli. Transcriptomic and proteomic analyses along with quantification of intermediates of tricarboxylic acid (TCA) were employed to monitor and study the bacterial responses. Multi-omics analysis revealed that extended zinc exposure induced mainly oxidative stress and elevated expression/production of enzymes of carbohydrate metabolism, especially enzymes for synthesis of trehalose. After the zinc withdrawal, E. coli metabolism returned to a baseline state. These findings shed light on the alteration of TCA and on importance of trehalose synthesis in metal-induced stress and its broader implications for bacterial metabolism and defense and consequently for the balance and health of the human and animal microbiome.
Zobrazit více v PubMed
Quadri TW, et al. Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega. 2017;2(11):8421–37. PubMed PMC
García-Gómez C, et al. Study of Zn availability, uptake, and effects on earthworms of zinc oxide nanoparticle versus bulk applied to two agricultural soils: acidic and calcareous. Chemosphere. 2020;239:124814. PubMed
Mendes CR, et al. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep. 2022;12(1):2658. PubMed PMC
Shi T, et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: a review. Ecotoxicol Environ Saf. 2018;164:118–24. PubMed
Additives EPo, Feed A. Scientific opinion on the potential reduction of the currently authorised maximum zinc content in complete feed. Efsa J. 2014;12(5):3668.
Espitia PJP, et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012;5:1447–64.
Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003;54(2):177–82. PubMed
Jones N, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71–6. PubMed
Sinha R, et al. Interaction and nanotoxic effect of ZnO and ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol. 2011;102(2):1516–20. PubMed
Brown LR et al. Increased zinc availability enhances initial aggregation and biofilm formation of Streptococcus pneumoniae. Front Cell Infect Microbiol, 2017: p. 233. PubMed PMC
Cui H, Smith AL. Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: a comprehensive review. Environ Res. 2022;204:112373. PubMed
Kociova S, et al. Zinc phosphate-based nanoparticles as alternatives to zinc oxide in diet of weaned piglets. J Anim Sci Biotechnol. 2020;11(1):1–16. PubMed PMC
Wu T, et al. Zinc exposure promotes commensal-to-pathogen transition in Pseudomonas aeruginosa leading to mucosal inflammation and illness in mice. Int J Mol Sci. 2021;22(24):13321. PubMed PMC
Rihacek M et al. Zinc effects on bacteria: insights from < i > Escherichia coli by multi-omics approach. mSystems. 0(0): p. e00733–23. PubMed PMC
Martínez JL. Bacterial pathogens: from natural ecosystems to human hosts. Environ Microbiol. 2013;15(2):325–33. PubMed
Martínez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev. 2011;35(5):768–89. PubMed
Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes. 2017;8(1):39. PubMed PMC
Khan R, et al. Bacterial polysaccharides—A big source for prebiotics and therapeutics. Front Nutr. 2022;9:1031935. PubMed PMC
Święciło A, Zych-Wężyk I. Bacterial stress response as an adaptation to life in a soil environment. Pol J Environ Stud, 2013. 22(6).
Jurtshuk P Jr. Bacterial metabolism. 2011.
Ron EZ. Bacterial stress response. The prokaryotes, 2006: pp. 1012–1027.
Wood JM. Osmosensing by bacteria. Science’s STKE. 2006;2006(357):pe43–43. PubMed
Belloch C, et al. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol. 2008;122(1–2):188–95. PubMed
Valls M, De Lorenzo V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev. 2002;26(4):327–38. PubMed
Bender DA. Amino acid metabolism. Wiley; 2012.
Fraenkel D, Vinopal R. Carbohydrate metabolism in bacteria. Annual Reviews Microbiol. 1973;27(1):69–100.
Fulco AJ. Fatty acid metabolism in bacteria. Prog Lipid Res. 1983;22(2):133–60. PubMed
Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443–54. PubMed PMC
Matuła K, et al. Phenotypic plasticity of Escherichia coli upon exposure to physical stress induced by ZnO nanorods. Sci Rep. 2019;9(1):8575. PubMed PMC
Seo S, Kim D, Szubin R. Palsson, and Bernhard, O.(2015). Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep. 12(8): pp. 1289–1299. PubMed
Xiao X, Wu Z-C, Chou K-C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS ONE. 2011;6(6):e20592. PubMed PMC
Tramonti A, De Canio M, De Biase D. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gady–gadw divergent promoters and identification of four novel 42 bp GadX/GadW‐specific binding sites. Mol Microbiol. 2008;70(4):965–82. PubMed
Weber H, et al. Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol. 2005;187(5):1591–603. PubMed PMC
Gibson RP, et al. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol. 2002;9(12):1337–46. PubMed
Hengge R. Proteolysis of σS (RpoS) and the general stress response in Escherichia coli. Res Microbiol. 2009;160(9):667–76. PubMed
De Virgilio C, et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast: I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem. 1994;219(1–2):179–86. PubMed
Hengge-Aronis R, et al. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol. 1991;173(24):7918–24. PubMed PMC
Van Laere A. Trehalose, reserve and/or stress metabolite? FEMS Microbiol Lett. 1989;63(3):201–9.
Benaroudj N, Goldberg AL. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem. 2001;276(26):24261–7. PubMed
Luo Y, Li W-M, Wang W. Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot. 2008;63(1–3):378–84.
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. Genotypes under nickel stress. Environ Sci Pollut Res. 2020;27(3):3043–64. PubMed
Garg N, Singh S. Mycorrhizal inoculations and silicon fortifications improve rhizobial symbiosis, antioxidant defense, trehalose turnover in pigeon pea genotypes under cadmium and zinc stress. Plant Growth Regul. 2018;86(1):105–19.
Rehman S, et al. Exogenously applied trehalose augments cadmium stress tolerance and yield of mung bean (Vigna radiata L.) grown in soil and hydroponic systems through reducing cd uptake and enhancing photosynthetic efficiency and antioxidant defense systems. Plants. 2022;11(6):822. PubMed PMC
Streeter JG. Accumulation of alpha, alpha-trehalose by Rhizobium bacteria and bacteroids. J Bacteriol. 1985;164(1):78–84. PubMed PMC
Meyer FM, et al. Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon. Metab Eng. 2011;13(1):18–27. PubMed
Cozzone AJ. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu Rev Microbiol. 1998;52(1):127–64. PubMed
Buchachenko AL, et al. A specific role of magnetic isotopes in biological and ecological systems. Physics and biophysics beyond. Prog Biophys Mol Biol. 2020;155:1–19. PubMed
Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29–41. PubMed
Textor S, et al. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol. 1997;168:428–36. PubMed
Jurtshuk P. Bacterial metabolism. Medical microbiology, 1996. 4.
Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998;1(5):639–48. PubMed
Moruno Algara M, et al. Trehalose protects Escherichia coli against carbon stress manifested by protein acetylation and aggregation. Mol Microbiol. 2019;112(3):866–80. PubMed
Steen JA, et al. The trehalose phosphotransferase system (PTS) in E. Coli W can transport low levels of sucrose that are sufficient to facilitate induction of the csc sucrose catabolism operon. PLoS ONE. 2014;9(2):e88688. PubMed PMC
Rimmele M, Boos W. Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol. 1994;176(18):5654–64. PubMed PMC
Carvalho SM, et al. Metabolomics of Escherichia coli treated with the antimicrobial carbon monoxide-releasing molecule CORM-3 reveals tricarboxylic acid cycle as major target. Antimicrob Agents Chemother. 2019;63(10). 10.1128/aac. 00643 – 19. PubMed PMC
Anders S, Huber W. Differential expression analysis for sequence count data. Nat Precedings, 2010: p. 1–1. PubMed PMC
Consortium U. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699. PubMed PMC
Team RC. R: A language and environment for statistical computing. 2022.
Van Rossum G, Drake FL. Python reference manual. Volume 111. Centrum voor Wiskunde en Informatica Amsterdam; 1995.