Assessing vitamin E acetate as a proxy for E-cigarette additives in a realistic pulmonary surfactant model
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
RGP0059/2019
Human Frontier Science Program
RGP0059/2019
Human Frontier Science Program
RGP0059/2019
Human Frontier Science Program
331349, 336234, 346135
Research Council of Finland
331349, 336234, 346135
Research Council of Finland
331349, 336234, 346135
Research Council of Finland
21-19854S
Grantová Agentura České Republiky
21-19854S
Grantová Agentura České Republiky
21-19854S
Grantová Agentura České Republiky
PubMed
39394419
PubMed Central
PMC11470143
DOI
10.1038/s41598-024-75301-8
PII: 10.1038/s41598-024-75301-8
Knihovny.cz E-resources
- Keywords
- EVALI, Lung surfactant, Molecular dynamics simulation, Pulmonary surfactant, Vaping-associated pulmonary injury,
- MeSH
- Acetates analysis chemistry MeSH
- Models, Biological MeSH
- Humans MeSH
- Pulmonary Surfactants * chemistry MeSH
- Propylene Glycol chemistry MeSH
- Electronic Nicotine Delivery Systems * MeSH
- Vaping * adverse effects MeSH
- Vitamin E * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetates MeSH
- Pulmonary Surfactants * MeSH
- Propylene Glycol MeSH
- Vitamin E * MeSH
Additives in vaping products, such as flavors, preservatives, or thickening agents, are commonly used to enhance user experience. Among these, Vitamin E acetate (VEA) was initially thought to be harmless but has been implicated as the primary cause of e-cigarette or vaping product use-associated lung injury, a serious lung disease. In our study, VEA serves as a proxy for other e-cigarette additives. To explore its harmful effects, we developed an exposure system to subject a pulmonary surfactant (PSurf) model to VEA-rich vapor. Through detailed analysis and atomic-level simulations, we found that VEA tends to cluster into aggregates on the PSurf surface, inducing deformations and weakening its essential elastic properties, critical for respiratory cycle function. Apart from VEA, our experiments also indicate that propylene glycol and vegetable glycerin, widely used in e-liquid mixtures, or their thermal decomposition products, alter surfactant properties. This research provides molecular-level insights into the detrimental impacts of vaping product additives on lung health.
Department of Physics University of Helsinki P O Box 64 00014 Helsinki Finland
See more in PubMed
Pinto, M. I. et al. Chemical characterisation of the vapour emitted by an e-cigarette using a ceramic wick-based technology. Sci. Rep. 12, 16497. 10.1038/s41598-022-19761-w (2022). PubMed PMC
Wang, L., Wang, Y., Chen, J., Liu, P. & Li, M. A review of toxicity mechanism studies of electronic cigarettes on respiratory system. Int. J. Mol. Sci. 23, 5030. 10.3390/ijms23095030 (2022). PubMed PMC
Li, Y. et al. Impact of e-liquid composition, coil temperature, and puff topography on the aerosol chemistry of electronic cigarettes. Chem. Res. Toxicol. 34, 1640–1654. 10.1021/acs.chemrestox.1c00070 (2021). PubMed
Jaegers, N. R., Hu, W., Weber, T. J. & Hu, J. Z. Low-temperature (< 200 C) degradation of electronic nicotine delivery system liquids generates toxic aldehydes. Sci. Rep. 11, 1–12. 10.1038/s41598-021-87044-x (2021). PubMed PMC
Ooi, B. G., Dutta, D., Kazipeta, K. & Chong, N. S. Influence of the e-cigarette emission profile by the ratio of glycerol to propylene glycol in e-liquid composition. ACS Omega. 4, 13338–13348. 10.1021/acsomega.9b01504 (2019). PubMed PMC
Carll, A. P. et al. E-cigarettes and their lone constituents induce cardiac arrhythmia and conduction defects in mice. Nat. Commun. 13, 6088. 10.1038/s41467-022-33203-1 (2022). PubMed PMC
Gonzalez, J. E. & Cooke, W. H. Acute effects of electronic cigarettes on arterial pressure and peripheral sympathetic activity in young nonsmokers. Am. J. Physiol. Heart Circ. Physiol. 320, H248–H255. 10.1152/ajpheart.00448.2020 (2021). PubMed
Moshensky, A. et al. Effects of mango and mint pod-based e-cigarette aerosol inhalation on inflammatory states of the brain, lung, heart, and colon in mice. eLife. 11, e67621. 10.7554/eLife.67621 (2022). PubMed PMC
Werner, A. K. et al. Hospitalizations and deaths associated with EVALI. N Engl. J. Med. 382, 1589–1598. 10.1056/NEJMoa1915314 (2020). PubMed PMC
Winnicka, L. & Shenoy, M. A. EVALI and the pulmonary toxicity of electronic cigarettes: a review. J. Gen. Intern. Med. 35, 2130–2135. 10.1007/s11606-020-05813-2 (2020). PubMed PMC
Blount, B. C. et al. Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N Engl. J. Med. 382, 697–705. 10.1056/NEJMoa1916433 (2020). PubMed PMC
Blount, B. C. et al. Evaluation of bronchoalveolar lavage fluid from patients in an outbreak of e-cigarette, or vaping, product use–associated lung injury—10 states, August–October 2019. MMWR Morb Mortal. Wkly. Rep. 68, 1040–1041. 10.15585/mmwr.mm6845e2 (2019). PubMed PMC
DiPasquale, M. et al. A mechanical mechanism for vitamin E acetate in e-cigarette/vaping-associated lung injury. Chem. Res. Toxicol. 33, 2432–2440. 10.1021/acs.chemrestox.0c00212 (2020). PubMed
Van Bavel, N., Lai, P., Amrein, M. & Prenner, E. J. Pulmonary surfactant function and molecular architecture is disrupted in the presence of vaping additives. Colloids Surf. B. 222, 113132. 10.1016/j.colsurfb.2023.113132 (2023). PubMed
Hayeck, N. et al. Carrier solvents of electronic nicotine delivery systems alter pulmonary surfactant. Chem. Res. Toxicol. 34, 1572–1577. 10.1021/acs.chemrestox.0c00528 (2021). PubMed PMC
Chand, H. S., Muthumalage, T., Maziak, W. & Rahman, I. Pulmonary toxicity and the pathophysiology of electronic cigarette, or vaping product, use associated lung injury. Front. Pharmacol. 10, 1619. 10.3389/fphar.2019.01619 (2020). PubMed PMC
Butt, Y. M. et al. Pathology of vaping-associated lung injury. N Engl. J. Med. 381, 1780–1781. 10.1056/NEJMc1913069 (2019). PubMed
Henry, T. S., Kanne, J. P. & Kligerman, S. J. Imaging of vaping-associated lung disease. N Engl. J. Med. 381, 1486–1487. 10.1056/NEJMc1911995 (2019). PubMed
Lynch, J. et al. Simultaneous temperature measurements and aerosol collection during vaping for the analysis of δ9-tetrahydrocannabinol and vitamin e acetate mixtures in ceramic coil style cartridges. Front. Chem. 9, 734793. 10.3389/fchem.2021.734793 (2021). PubMed PMC
Wu, D. & O’Shea, D. F. Potential for release of pulmonary toxic ketene from vaping pyrolysis of vitamin E acetate. PNAS. 117, 6349–6355. 10.1073/pnas.1920925117 (2020). PubMed PMC
Pérez-Gil, J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid–protein interactions. Biochim. Biophys. Acta Biomembr. 1778, 1676–1695. 10.1016/j.bbamem.2008.05.003 (2008). PubMed
Goerke, J. Pulmonary surfactant: functions and molecular composition. Biochim. Biophys. Acta Mol. Basis Dis. 1408, 79–89. 10.1016/S0925-4439(98)00060-X (1998). PubMed
Matsumoto, S. et al. Dose-dependent pulmonary toxicity of aerosolized vitamin E acetate. Am. J. Respir Cell. Mol. Biol. 63, 748–757. 10.1165/rcmb.2020-0209OC (2020). PubMed PMC
Enkavi, G., Javanainen, M., Kulig, W., Róg, T. & Vattulainen, I. Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chem. Rev. 119, 5607–5774. 10.1021/acs.chemrev.8b00538 (2019). PubMed PMC
Korolainen, H. et al. Dimerization of the pulmonary surfactant protein C in a membrane environment. PloS One. 17, e0267155. 10.1371/journal.pone.0267155 (2022). PubMed PMC
Liekkinen, J. et al. Surfactant proteins SP-B and SP-C in pulmonary surfactant monolayers: physical properties controlled by specific protein–lipid interactions. Langmuir. 39, 4338–4350. 10.1021/acs.langmuir.2c03349 (2023). PubMed PMC
Xu, L. et al. Menthol in electronic cigarettes causes biophysical inhibition of pulmonary surfactant. Am. J. Physiol. - Lung Cell. Mol. Physiol. 323, L165–L177. 10.1152/ajplung.00015.2022 (2022). PubMed
Neves Cruz, J. et al. Insight into the interaction mechanism of nicotine, NNK, and NNN with cytochrome P450 2A13 based on molecular dynamics simulation. J. Chem. Inf. Model. 60, 766–776. 10.1021/acs.jcim.9b00741 (2019). PubMed
Maximoff, S. N., Salehi, A. & Rostami, A. A. Molecular dynamics simulations of homogeneous nucleation of liquid phase in highly supersaturated propylene glycol vapors. J. Aerosol Sci. 154, 105743. 10.1016/j.jaerosci.2020.105743 (2021).
Qin, S. S. & Yu, Z. W. Molecular dynamics simulations of α-tocopherol in model biomembranes. Acta Phys. - Chim. Sin. 27, 213–227. 10.3866/PKU.WHXB20110109 (2011).
Qin, S. S., Yu, Z. W. & Yu, Y. X. Structural and kinetic properties of α-tocopherol in phospholipid bilayers, a molecular dynamics simulation study. J. Phys. Chem. B. 113, 16537–16546. 10.1021/jp9074306 (2009). PubMed
Leng, X. et al. α-Tocopherol is well designed to protect polyunsaturated phospholipids: MD simulations. Biophys. J. 109, 1608–1618. 10.1016/j.bpj.2015.08.032 (2015). PubMed PMC
Leng, X., Zhu, F. & Wassall, S. R. Vitamin E has reduced affinity for a polyunsaturated phospholipid: an umbrella sampling molecular dynamics simulations study. J. Phys. Chem. B. 122, 8351–8358. 10.1021/acs.jpcb.8b05016 (2018). PubMed
Boonnoy, P., Karttunen, M. & Wong-Ekkabut, J. Does α-tocopherol flip-flop help to protect membranes against oxidation? J. Phys. Chem. B. 122, 10362–10370. 10.1021/acs.jpcb.8b09064 (2018). PubMed
Meng, F. Molecular simulation of α-tocopherol passing across DPPC lipid using potential of mean force and accelerated molecular dynamics method. J. Theor. Comput. Chem. 12, 1341011. 10.1142/S0219633613410113 (2013).
Jo, S., Rui, H., Lim, J. B., Klauda, J. B. & Im, W. Cholesterol flip-flop: insights from free energy simulation studies. J. Phys. Chem. B. 114, 13342–13348. 10.1021/jp108166k (2010). PubMed
Lin, J., Novak, B. & Moldovan, D. Molecular dynamics simulation study of the effect of DMSO on structural and permeation properties of DMPC lipid bilayers. J. Phys. Chem. B. 116, 1299–1308. 10.1021/jp208145b (2012). PubMed
Podloucká, P. et al. Lipid bilayer membrane affinity rationalizes inhibition of lipid peroxidation by a natural lignan antioxidant. J. Phys. Chem. B. 117, 5043–5049. 10.1021/jp3127829 (2013). PubMed
Lopez-Rodriguez, E. & Pérez-Gil, J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. Biochim. Biophys. Acta Biomembr. 1838, 1568–1585. 10.1016/j.bbamem.2014.01.028 (2014). PubMed
Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164. 10.1002/jcc.21224 (2009). PubMed
Grote, F. & Lyubartsev, A. P. Optimization of slipids force field parameters describing headgroups of phospholipids. J. Phys. Chem. B. 124, 8784–8793. 10.1021/acs.jpcb.0c06386 (2020). PubMed PMC
Jämbeck, J. P. & Lyubartsev, A. P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 116, 3164–3179. 10.1021/jp212503e (2012). PubMed PMC
Jambeck, J. P. & Lyubartsev, A. P. An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 8, 2938–2948. 10.1021/ct300342n (2012). PubMed
Jambeck, J. P. & Lyubartsev, A. P. Another piece of the membrane puzzle: extending Slipids further. J. Chem. Theory Comput. 9, 774–784. 10.1021/ct300777p (2013). PubMed
Izadi, S., Anandakrishnan, R. & Onufriev, A. V. Building water models: a different approach. J. Phys. Chem. Lett. 5, 3863–3871. 10.1021/jz501780a (2014). PubMed PMC
Javanainen, M., Lamberg, A., Cwiklik, L., Vattulainen, I. & Ollila, O. S. Atomistic model for nearly quantitative simulations of Langmuir monolayers. Langmuir. 34, 2565–2572. 10.1021/acs.langmuir.7b02855 (2018). PubMed
Kohagen, M., Mason, P. E. & Jungwirth, P. Accounting for electronic polarization effects in aqueous sodium chloride via molecular dynamics aided by neutron scattering. J. Phys. Chem. B. 120, 1454–1460. 10.1021/acs.jpcb.5b05221 (2016). PubMed
Martinek, T. et al. Calcium ions in aqueous solutions: accurate force field description aided by ab initio molecular dynamics and neutron scattering. J. Chem. Phys. 148, 222813. 10.1063/1.5006779 (2018). PubMed
Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268. 10.1080/00268978400101201 (1984).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 31, 1695. 10.1103/PhysRevA.31.1695 (1985). PubMed
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092. 10.1063/1.464397 (1993).
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593. 10.1063/1.470117 (1995).
Abraham, M. J. et al. High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1. GROMACS, 19–25. 10.1016/j.softx.2015.06.001 (2015).
Behar, R. Z., Hua, M. & Talbot, P. Puffing topography and nicotine intake of electronic cigarette users. PloS One. 10, e0117222. 10.1371/journal.pone.0117222 (2015). PubMed PMC
Kośmider, L., Jackson, A., Leigh, N., O’connor, R. & Goniewicz, M. L. Circadian puffing behavior and topography among e-cigarette users. Tob. Regul. Sci. 4, 41–49. 10.18001/TRS.4.5.4 (2018). PubMed PMC
Korzun, T. et al. E-cigarette airflow rate modulates toxicant profiles and can lead to concerning levels of solvent consumption. ACS Omega. 3, 30–36. 10.1021/acsomega.7b01521 (2018). PubMed PMC
Ogunwale, M. A. et al. Aldehyde detection in electronic cigarette aerosols. ACS Omega. 2, 1207–1214. 10.1021/acsomega.6b00489 (2017). PubMed PMC
Hughes, Z. E., Malajczuk, C. J. & Mancera, R. L. The effects of cryosolvents on DOPC—β-sitosterol bilayers determined from molecular dynamics simulations. J. Phys. Chem. B. 117, 3362–3375. 10.1021/jp400975y (2013). PubMed
Abou-Saleh, R. H. et al. Molecular effects of glycerol on lipid monolayers at the gas–liquid interface: impact on microbubble physical and mechanical properties. Langmuir. 35, 10097–10105. 10.1021/acs.langmuir.8b04130 (2019). PubMed
Kim, M. D. et al. The combination of propylene glycol and vegetable glycerin e-cigarette aerosols induces airway inflammation and mucus hyperconcentration. Sci. Rep. 1942. 10.1038/s41598-024-52317-8 (2024). PubMed PMC
Madison, M. C. et al. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J. Clin. Investig. 129, 4290–4304. 10.1172/JCI128531 (2020). PubMed PMC
Kim, M. D. et al. Vegetable glycerin e-cigarette aerosols cause airway inflammation and ion channel dysfunction. Front. Pharmacol. 13, 1012723. 10.3389/fphar.2022.1012723 (2022). PubMed PMC
Kim, M. D. et al. E-cigarette aerosols of propylene glycol impair BK channel activity and parameters of mucociliary function. Am. J. Physiol. Lung Cell. Mol. Physiol. 324, L468–L479. 10.1152/ajplung.00157.2022 (2023). PubMed PMC
Milad, N. & Morissette, M. C. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. Eur. Respir Rev. 30, 210077. 10.1183/16000617.0077-2021 (2021). PubMed PMC
Canchola, A., Meletz, R., Khandakar, R. A., Woods, M. & Lin, Y. H. Temperature dependence of emission product distribution from vaping of vitamin E acetate. PloS One. 17, e0265365. 10.1371/journal.pone.0265365 (2022). PubMed PMC
Olżyńska, A. et al. Properties of lipid models of lung surfactant containing cholesterol and oxidized lipids: a mixed experimental and computational study. Langmuir. 36, 1023–1033. 10.1021/acs.langmuir.9b02469 (2020). PubMed