Effectiveness of ex ante honesty oaths in reducing dishonesty depends on content
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39433937
DOI
10.1038/s41562-024-02009-0
PII: 10.1038/s41562-024-02009-0
Knihovny.cz E-zdroje
- MeSH
- daně * MeSH
- dospělí MeSH
- lidé MeSH
- podvádění * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Spojené království MeSH
- Spojené státy americké MeSH
Dishonest behaviours such as tax evasion impose significant societal costs. Ex ante honesty oaths-commitments to honesty before action-have been proposed as interventions to counteract dishonest behaviour, but the heterogeneity in findings across operationalizations calls their effectiveness into question. We tested 21 honesty oaths (including a baseline oath)-proposed, evaluated and selected by 44 expert researchers-and a no-oath condition in a megastudy involving 21,506 UK and US participants from Prolific.com who played an incentivized tax evasion game online. Of the 21 interventions, 10 significantly improved tax compliance by 4.5 to 8.5 percentage points, with the most successful nearly halving tax evasion. Limited evidence for moderators was found. Experts and laypeople failed to predict the most effective interventions, though experts' predictions were more accurate. In conclusion, honesty oaths were effective in curbing dishonesty, but their effectiveness varied depending on content. These findings can help design impactful interventions to curb dishonesty.
Baruch Ivcher School of Psychology Reichman University Herzliya Israel
Batten School of Leadership and Public Policy University of Virginia Charlottesville VA USA
Center for Trustworthy Data Science and Security University of Duisburg Essen Duisburg Germany
CES Université Paris 1 Panthéon Sorbonne Paris France
Department of Business Administration Ben Gurion University of the Negev Beersheba Israel
Department of Economics and Business Economics Aarhus University Aarhus Denmark
Department of Economics Johannes Kepler University Linz Linz Austria
Department of Economics Management and Quantitative Methods University of Milan Milan Italy
Department of Management Aarhus University Aarhus Denmark
Department of Management Prague University of Economics and Business Prague Czech Republic
Department of Philosophy and Religious Studies NTNU Trondheim Trondheim Norway
Department of Philosophy University of Milan Milan Italy
Department of Psychology and Behavioural Sciences Aarhus University Aarhus Denmark
Department of Psychology Bielefeld University Bielefeld Germany
Department of Psychology University of Kaiserslautern Landau Landau Germany
Department of Psychology University of Milan Bicocca Milan Italy
Department of Strategy and Management Norwegian School of Economics Bergen Norway
Faculty of Law Bar Ilan University Ramat Gan Israel
Faculty of Social Sciences Charles University Prague Czech Republic
Federal University of Applied Administrative Sciences Berlin Germany
Federmann School of Public Policy Hebrew University of Jerusalem Jerusalem Israel
Fresenius University Hamburg Germany
Fuqua School of Busisness Duke University Durham NC USA
IESE Business School University of Navarra Barcelona Spain
Institute of Economics Ulm University Ulm Germany
Institute of Environmental Planning Leibniz University Hannover Hannover Germany
Institute of Psychology University of Wrocław Wrocław Poland
Jagiellonian University Krakow Poland
Max Planck Institute for Human Development Berlin Germany
Max Planck Institute for the Study of Crime Security and Law Freiburg Germany
Paris School of Economics Paris France
Zobrazit více v PubMed
Sommerstein, A. H. & Torrance, I. C. Oaths and Swearing in Ancient Greece (De Gruyter, 2014); https://doi.org/10.1515/9783110227369
Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 14, 137–158 (2000). DOI
Bruin, B. Pledging integrity: oaths as forms of business ethics management. J. Bus. Ethics 136, 23–42 (2016). DOI
Gächter, S. & Schultz, J. F. Intrinsic honesty and the prevalence of rule violations across societies. Nature 531, 496–499 (2016). PubMed DOI PMC
Abeler, J., Nosenzo, D. & Raymond, C. Preferences for truth-telling. Econometrica 87, 1115–1153 (2019). DOI
Gerlach, P., Teodorescu, K. & Hertwig, R. The truth about lies: a meta-analysis on dishonest behavior. Psychol. Bull. 145, 1–44 (2019). PubMed DOI
Leib, M., Köbis, N., Soraperra, I., Weisel, O. & Shalvi, S. Collaborative dishonesty: a meta-analytic review. Psychol. Bull. 147, 1241 (2021). PubMed DOI
Jacobsen, C., Fosgaard, T. R. & Pascual-Ezama, D. Why do we lie? A practical guide to the dishonesty literature. J. Econ. Surv. 32, 357–387 (2018). DOI
Bellé, N. & Cantarelli, P. What causes unethical behavior? A meta-analysis to set an agenda for public administration research. Public Adm. Rev. 77, 327–339 (2017). DOI
Hertwig, R. & Mazar, N. Toward a taxonomy and review of honesty interventions. Curr. Opin. Psychol. 47, 101410 (2022). PubMed DOI
Zickfeld, J. H. et al. Committed (dis)honesty: a systematic meta-analytic review of the divergent effects of social commitment to individuals or honesty oaths on dishonest behavior. Psychol. Bull. 150, 586–620 (2024). PubMed DOI
Mazar, N., Amir, O. & Ariely, D. The dishonesty of honest people: a theory of self-concept maintenance. J. Mark. Res. 45, 633–644 (2008). DOI
Barkan, R., Ayal, S. & Ariely, D. Ethical dissonance, justifications, and moral behavior. Curr. Opin. Psychol. 6, 157–161 (2015). DOI
Jacquemet, N., Luchini, S., Malézieux, A. & Shogren, J. F. Who’ll stop lying under oath? Empirical evidence from tax evasion games. Eur. Econ. Rev. 124, 103369 (2020). DOI
Shalvi, S., Gino, F., Barkan, R. & Ayal, S. Self-serving justifications: doing wrong and feeling moral. Curr. Dir. Psychol. Sci. 24, 125–130 (2015). DOI
Koning, L., Junger, M. & van Hoof, J. Digital signatures: a tool to prevent and predict dishonesty? Mind Soc. 19, 257–285 (2020). DOI
Kristal, A. S. et al. Signing at the beginning versus at the end does not decrease dishonesty. Proc. Natl Acad. Sci. USA 117, 7103–7107 (2020). PubMed DOI PMC
Chou, E. Y. What’s in a name? The toll e-signatures take on individual honesty. J. Exp. Soc. Psychol. 61, 84–95 (2015). DOI
Cagala, T., Glogowsky, U., Rincke, J. & Schudy, S. Commitment requests do not affect truth-telling in laboratory and online experiments. Games Econ. Behav. 143, 179–190 (2024). DOI
Cagala, T., Glogowsky, U. & Rincke, J. Detecting and preventing cheating in exams: evidence from a field experiment. J. Hum. Resour. 59, 210–241 (2024). DOI
Kettle, S., Hernandez, M., Sanders, M., Hauser, O. & Ruda, S. Failure to CAPTCHA attention: null results from an honesty priming experiment in Guatemala. Behav. Sci. 7, 28 (2017). PubMed DOI PMC
Koessler, A.-K., Torgler, B., Feld, L. P. & Frey, B. S. Commitment to pay taxes: results from field and laboratory experiments. Eur. Econ. Rev. 115, 78–98 (2019). DOI
Martuza, J. B., Skard, S. R., Løvlie, L. & Thorbjørnsen, H. Do honesty-nudges really work? A large-scale field experiment in an insurance context. J. Consum. Behav. 21, 927–951 (2022). DOI
Shu, L. L., Mazar, N., Gino, F., Ariely, D. & Bazerman, M. H. Signing at the beginning makes ethics salient and decreases dishonest self-reports in comparison to signing at the end. Proc. Natl Acad. Sci. USA 109, 15197–15200 (2012); retraction 118, e2115397118 (2021).
Peer, E., Mazar, N., Feldman, Y. & Ariely, D. How pledges reduce dishonesty: the role of involvement and identification. J. Exp. Soc. Psychol. 113, 104614 (2024). DOI
Jacquemet, N., Luchini, S., Rosaz, J. & Shogren, J. F. Truth-telling under oath. Manag. Sci. 65, 426–438 (2018). DOI
Zickfeld, J. H., Ścigala, K. A., Weiss, A., Michael, J. & Mitkidis, P. Commitment to honesty oaths decreases dishonesty, but commitment to another individual does not affect dishonesty. Commun. Psychol. 1, 27 (2023). PubMed DOI PMC
Schild, C., Heck, D. W., Scigala, K. A. & Zettler, I. Revisiting REVISE: (re)testing unique and combined effects of reminding, visibility, and self-engagement manipulations on cheating behavior. J. Econ. Psychol. 75, 102161 (2020). DOI
Skowronek, S. E. DENIAL: a conceptual framework to improve honesty nudges. Curr. Opin. Psychol. https://doi.org/10.1016/j.copsyc.2022.101456 (2022).
Le Maux, B. & Necker, S. Honesty nudges: effect varies with content but not with timing. J. Econ. Behav. Organ. 207, 433–456 (2023). DOI
Peer, E. & Feldman, Y. Honesty pledges for the behaviorally-based regulation of dishonesty. J. Eur. Public Policy 28, 761–781 (2021). DOI
Duckworth, A. L. & Milkman, K. L. A guide to megastudies. PNAS Nexus 1, pgac214 (2022). PubMed DOI PMC
Milkman, K. L. et al. Megastudies improve the impact of applied behavioural science. Nature 600, 478–483 (2021). PubMed DOI PMC
Milkman, K. L. et al. A 680,000-person megastudy of nudges to encourage vaccination in pharmacies. Proc. Natl Acad. Sci. USA 119, e2115126119 (2022). PubMed DOI PMC
Alm, J. & Malézieux, A. 40 years of tax evasion games: a meta-analysis. Exp. Econ. 24, 699–750 (2021). DOI
Alm, J., Bloomquist, K. M. & McKee, M. On the external validity of laboratory tax compliance experiments. Econ. Inq. 53, 1170–1186 (2015). DOI
Bloomquist, K. M. A comparative analysis of reporting compliance behavior in laboratory experiments and random taxpayer audits. In Proc. Annual Conference on Taxation and Minutes of the Annual Meeting of the National Tax Association Vol. 102, 113–122 (National Tax Association, 2009).
Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for psychological research: a tutorial. Adv. Methods Pract. Psychol. Sci. 1, 259–269 (2018). DOI
Schweitzer, M. E. & Hsee, C. K. Stretching the truth: elastic justification and motivated communication of uncertain information. J. Risk Uncertain. 25, 185–201 (2002). DOI
Gollwitzer, P. M. & Sheeran, P. Implementation intentions and goal achievement: a meta-analysis of effects and processes. Adv. Exp. Soc. Psychol. 38, 69–119 (2006). DOI
Mitkidis, P., Sørensen, J., Nielbo, K. L., Andersen, M. & Lienard, P. Collective-goal ascription increases cooperation in humans. PLoS ONE 8, e64776 (2013). PubMed DOI PMC
Mulder, L. B., Jordan, J. & Rink, F. The effect of specific and general rules on ethical decisions. Organ. Behav. Hum. Decis. Process. 126, 115–129 (2015). DOI
Mulder, L. B., Rink, F. & Jordan, J. Constraining temptation: how specific and general rules mitigate the effect of personal gain on unethical behavior. J. Econ. Psychol. 76, 102242 (2020). DOI
Verschuere, B. et al. Registered replication report on Mazar, Amir, and Ariely (2008). Adv. Methods Pract. Psychol. Sci. 1, 299–317 (2018). DOI
Zhao, J., Dong, Z. & Yu, R. Don’t remind me: when explicit and implicit moral reminders enhance dishonesty. J. Exp. Soc. Psychol. 85, 103895 (2019). DOI
Toor, N. S. Comparison of Dishonesty Interventions: A Conceptual Replication Study. MA thesis, Univ. Chicago (2022); https://doi.org/10.6082/uchicago.5110
Jamison, J. C., Mazar, N. & Sen, I. Applying behavioral insights to tax compliance: experimental evidence from Latvia. J. Tax. Adm. 6, 6–32 (2021).
Ayal, S., Celse, J. & Hochman, G. Crafting messages to fight dishonesty: a field investigation of the effects of social norms and watching eye cues on fare evasion. Organ. Behav. Hum. Decis. Process. 166, 9–19 (2021). DOI
Lois, G. & Wessa, M. Honest mistake or perhaps not: the role of descriptive and injunctive norms on the magnitude of dishonesty. J. Behav. Decis. Mak. 34, 20–34 (2021). DOI
Hallsworth, M., List, J. A., Metcalfe, R. D. & Vlaev, I. The behavioralist as tax collector: using natural field experiments to enhance tax compliance. J. Public Econ. 148, 14–31 (2017). DOI
Brudermann, T., Bartel, G., Fenzl, T. & Seebauer, S. Eyes on social norms: a field study on an honor system for newspaper sale. Theory Decis. 79, 285–306 (2015). DOI
Köbis, N. C., Troost, M., Brandt, C. O. & Soraperra, I. Social norms of corruption in the field: social nudges on posters can help to reduce bribery. Behav. Public Policy 6, 597–624 (2022). DOI
Fellner, G., Sausgruber, R. & Traxler, C. Testing enforcement strategies in the field: threat, moral appeal and social information. J. Eur. Econ. Assoc. 11, 634–660 (2013). DOI
Dimant, E., Van Kleef, G. A. & Shalvi, S. Requiem for a nudge: framing effects in nudging honesty. J. Econ. Behav. Organ. 172, 247–266 (2020). DOI
Castro, L. & Scartascini, C. Tax compliance and enforcement in the pampas evidence from a field experiment. J. Econ. Behav. Organ. 116, 65–82 (2015). DOI
Hernandez, M., Jamison, J., Korczyc, E., Mazar, N. & Sormani, R. Applying Behavioral Insights to Improve Tax Collection: Experimental Evidence from Poland Working Paper (World Bank, 2017).
Köbis, N., Starke, C. & Rahwan, I. The promise and perils of using artificial intelligence to fight corruption. Nat. Mach. Intell. 4, 418–424 (2022). DOI
Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).
Guzikevits, M. & Choshen-Hillel, S. The optics of lying: how pursuing an honest social image shapes dishonest behavior. Curr. Opin. Psychol. 46, 101384 (2022). PubMed DOI
Alm, J. & Torgler, B. Culture differences and tax morale in the United States and in Europe. J. Econ. Psychol. 27, 224–246 (2006). DOI
Heck, D. W., Thielmann, I., Moshagen, M. & Hilbig, B. E. Who lies? A large-scale reanalysis linking basic personality traits to unethical decision making. Judgm. Decis. Mak. 13, 356–371 (2018). DOI
Capraro, V. Gender differences in lying in sender–receiver games: a meta-analysis. Judgm. Decis. Mak. 13, 345–355 (2018). DOI
DellaVigna, S. & Pope, D. Predicting experimental results: who knows what? J. Polit. Econ. 126, 2410–2456 (2018). DOI
Götz, F. M., Gosling, S. D. & Rentfrow, P. J. Small effects: the indispensable foundation for a cumulative psychological science. Perspect. Psychol. Sci. 17, 205–215 (2022). PubMed DOI
Zizzo, D. J. Experimenter demand effects in economic experiments. Exp. Econ. 13, 75–98 (2010). DOI
Jacquemet, N., James, A. G., Luchini, S., Murphy, J. J. & Shogren, J. F. Do truth-telling oaths improve honesty in crowd-working? PLoS ONE 16, e0244958 (2021). PubMed DOI PMC
Jacquemet, N., Luchini, S., Rosaz, J. & Shogren, J. F. Can we commit future managers to honesty? Front. Psychol. 12, 701627 (2021). PubMed DOI PMC
Jacquemet, N., Joule, R.-V., Luchini, S. & Shogren, J. F. Preference elicitation under oath. J. Environ. Econ. Manag. 65, 110–132 (2013). DOI
Jacquemet, N., James, A., Luchini, S. & Shogren, J. F. Referenda under oath. Environ. Resour. Econ. 67, 479–504 (2017). DOI
Corrigan-Gibbs, H., Gupta, N., Northcutt, C., Cutrell, E. & Thies, W. Deterring cheating in online environments. ACM Trans. Comput. Hum. Interact. 22, 28 (2015). DOI
Uhlmann, E. L. et al. Scientific utopia III: crowdsourcing science. Perspect. Psychol. Sci. 14, 711–733 (2019). PubMed DOI
Palan, S. & Schitter, C. Prolific.ac—a subject pool for online experiments. J. Behav. Exp. Financ. 17, 22–27 (2018). DOI
Peer, E., Rothschild, D., Gordon, A., Evernden, Z. & Damer, E. Data quality of platforms and panels for online behavioral research. Behav. Res. Methods 54, 1643–1662 (2022). PubMed DOI
De Vries, R. E. The 24-item brief HEXACO inventory (BHI). J. Res. Pers. 47, 871–880 (2013). DOI
Yamagishi, T. & Yamagishi, M. Trust and commitment in the United States and Japan. Motiv. Emot. 18, 129–166 (1994). DOI
Skowronek, S. About 70% of participants know that the canonical deception paradigms measure dishonesty. Acad. Manag. Proc. https://doi.org/10.5465/AMBPP.2021.107 (2021).
Lakens, D. Sample size justification. Collabra Psychol. 8, 33267 (2022). DOI
Kubinec, R. Ordered beta regression: a parsimonious, well-fitting model for continuous data with lower and upper bounds. Polit. Anal. 31, 519–536 (2023). DOI
Bolker, B. Getting Started with the glmmTMB Package (R Foundation for Statistical Computing, 2016).
Zickfeld, J. MegaOath: datasets. Zenodo https://doi.org/10.5281/zenodo.13329833 (2024).
Zickfeld, J. H. Datasets to ‘Effectiveness of ex-ante honesty oaths in reducing dishonesty depends on content’. Zenodo https://zenodo.org/doi/10.5281/zenodo.10777159 (2024).
R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2022).
Robinson, D., Hayes, A. & Couch, S. broom: Convert statistical objects into tidy tibbles. R package version 1.0.4 https://CRAN.R-project.org/package=broom (2023).
Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. dplyr: A grammar of data manipulation. R package version 1.1.1 https://CRAN.R-project.org/package=dplyr (2023).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0 https://CRAN.R-project.org/package=ggpubr (2020).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017). DOI
Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Arel-Bundock, V. marginaleffects: Predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 0.14.0 https://CRAN.R-project.org/package=marginaleffects (2023).
Taketomi, N. & Emura, T. meta.shrinkage: Meta-analyses for simultaneously estimating individual means. R package version 0.1.4 https://CRAN.R-project.org/package=meta.shrinkage (2023).
Aust, F. & Barth, M. papaja: Prepare reproducible APA journal articles with R Markdown. R package version 0.1.1 https://github.com/crsh/papaja (2022).
Wickham, H. & Henry, L. purrr: Functional programming tools. R package version 1.0.1 https://CRAN.R-project.org/package=purrr (2023).
Revelle, W. psych: Procedures for psychological, psychometric, and personality research. R package version 2.2.5 https://CRAN.R-project.org/package=psych (2022).
Ginn, J., O’Brien, J. & Silge, J. qualtRics: Download ‘qualtrics’ survey data. R package version 3.1.7 https://CRAN.R-project.org/package=qualtRics (2022).
Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version 2.8.14 https://CRAN.R-project.org/package=sjPlot (2023).
Wickham, H. stringr: Simple, consistent wrappers for common string operations. R package version 1.5.0 https://CRAN.R-project.org/package=stringr (2022).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019). DOI
van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. https://doi.org/10.18637/jss.v045.i03 (2011).