Effectiveness of ex ante honesty oaths in reducing dishonesty depends on content

. 2025 Jan ; 9 (1) : 169-187. [epub] 20241021

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39433937
Odkazy

PubMed 39433937
DOI 10.1038/s41562-024-02009-0
PII: 10.1038/s41562-024-02009-0
Knihovny.cz E-zdroje

Dishonest behaviours such as tax evasion impose significant societal costs. Ex ante honesty oaths-commitments to honesty before action-have been proposed as interventions to counteract dishonest behaviour, but the heterogeneity in findings across operationalizations calls their effectiveness into question. We tested 21 honesty oaths (including a baseline oath)-proposed, evaluated and selected by 44 expert researchers-and a no-oath condition in a megastudy involving 21,506 UK and US participants from Prolific.com who played an incentivized tax evasion game online. Of the 21 interventions, 10 significantly improved tax compliance by 4.5 to 8.5 percentage points, with the most successful nearly halving tax evasion. Limited evidence for moderators was found. Experts and laypeople failed to predict the most effective interventions, though experts' predictions were more accurate. In conclusion, honesty oaths were effective in curbing dishonesty, but their effectiveness varied depending on content. These findings can help design impactful interventions to curb dishonesty.

Baruch Ivcher School of Psychology Reichman University Herzliya Israel

Batten School of Leadership and Public Policy University of Virginia Charlottesville VA USA

Center for Trustworthy Data Science and Security University of Duisburg Essen Duisburg Germany

CES Université Paris 1 Panthéon Sorbonne Paris France

CESifo Munich Munich Germany

Department of Business Administration Ben Gurion University of the Negev Beersheba Israel

Department of Economics and Business Economics Aarhus University Aarhus Denmark

Department of Economics Johannes Kepler University Linz Linz Austria

Department of Economics Management and Quantitative Methods University of Milan Milan Italy

Department of Management Aarhus University Aarhus Denmark

Department of Management Prague University of Economics and Business Prague Czech Republic

Department of Philosophy and Religious Studies NTNU Trondheim Trondheim Norway

Department of Philosophy University of Milan Milan Italy

Department of Psychology and Behavioural Sciences Aarhus University Aarhus Denmark

Department of Psychology Bielefeld University Bielefeld Germany

Department of Psychology University of Kaiserslautern Landau Landau Germany

Department of Psychology University of Milan Bicocca Milan Italy

Department of Strategy and Management Norwegian School of Economics Bergen Norway

Faculty of Law Bar Ilan University Ramat Gan Israel

Faculty of Social Sciences Charles University Prague Czech Republic

Federal University of Applied Administrative Sciences Berlin Germany

Federmann School of Public Policy Hebrew University of Jerusalem Jerusalem Israel

Fresenius University Hamburg Germany

Fuqua School of Busisness Duke University Durham NC USA

IESE Business School University of Navarra Barcelona Spain

Institute of Economics Ulm University Ulm Germany

Institute of Environmental Planning Leibniz University Hannover Hannover Germany

Institute of Psychology University of Wrocław Wrocław Poland

Jagiellonian University Krakow Poland

Max Planck Institute for Human Development Berlin Germany

Max Planck Institute for the Study of Crime Security and Law Freiburg Germany

Paris School of Economics Paris France

Questrom School of Business Boston University Boston MA USA

School of Psychology University of Plymouth Plymouth UK

Zobrazit více v PubMed

Sommerstein, A. H. & Torrance, I. C. Oaths and Swearing in Ancient Greece (De Gruyter, 2014); https://doi.org/10.1515/9783110227369

Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 14, 137–158 (2000). DOI

Bruin, B. Pledging integrity: oaths as forms of business ethics management. J. Bus. Ethics 136, 23–42 (2016). DOI

Gächter, S. & Schultz, J. F. Intrinsic honesty and the prevalence of rule violations across societies. Nature 531, 496–499 (2016). PubMed DOI PMC

Abeler, J., Nosenzo, D. & Raymond, C. Preferences for truth-telling. Econometrica 87, 1115–1153 (2019). DOI

Gerlach, P., Teodorescu, K. & Hertwig, R. The truth about lies: a meta-analysis on dishonest behavior. Psychol. Bull. 145, 1–44 (2019). PubMed DOI

Leib, M., Köbis, N., Soraperra, I., Weisel, O. & Shalvi, S. Collaborative dishonesty: a meta-analytic review. Psychol. Bull. 147, 1241 (2021). PubMed DOI

Jacobsen, C., Fosgaard, T. R. & Pascual-Ezama, D. Why do we lie? A practical guide to the dishonesty literature. J. Econ. Surv. 32, 357–387 (2018). DOI

Bellé, N. & Cantarelli, P. What causes unethical behavior? A meta-analysis to set an agenda for public administration research. Public Adm. Rev. 77, 327–339 (2017). DOI

Hertwig, R. & Mazar, N. Toward a taxonomy and review of honesty interventions. Curr. Opin. Psychol. 47, 101410 (2022). PubMed DOI

Zickfeld, J. H. et al. Committed (dis)honesty: a systematic meta-analytic review of the divergent effects of social commitment to individuals or honesty oaths on dishonest behavior. Psychol. Bull. 150, 586–620 (2024). PubMed DOI

Mazar, N., Amir, O. & Ariely, D. The dishonesty of honest people: a theory of self-concept maintenance. J. Mark. Res. 45, 633–644 (2008). DOI

Barkan, R., Ayal, S. & Ariely, D. Ethical dissonance, justifications, and moral behavior. Curr. Opin. Psychol. 6, 157–161 (2015). DOI

Jacquemet, N., Luchini, S., Malézieux, A. & Shogren, J. F. Who’ll stop lying under oath? Empirical evidence from tax evasion games. Eur. Econ. Rev. 124, 103369 (2020). DOI

Shalvi, S., Gino, F., Barkan, R. & Ayal, S. Self-serving justifications: doing wrong and feeling moral. Curr. Dir. Psychol. Sci. 24, 125–130 (2015). DOI

Koning, L., Junger, M. & van Hoof, J. Digital signatures: a tool to prevent and predict dishonesty? Mind Soc. 19, 257–285 (2020). DOI

Kristal, A. S. et al. Signing at the beginning versus at the end does not decrease dishonesty. Proc. Natl Acad. Sci. USA 117, 7103–7107 (2020). PubMed DOI PMC

Chou, E. Y. What’s in a name? The toll e-signatures take on individual honesty. J. Exp. Soc. Psychol. 61, 84–95 (2015). DOI

Cagala, T., Glogowsky, U., Rincke, J. & Schudy, S. Commitment requests do not affect truth-telling in laboratory and online experiments. Games Econ. Behav. 143, 179–190 (2024). DOI

Cagala, T., Glogowsky, U. & Rincke, J. Detecting and preventing cheating in exams: evidence from a field experiment. J. Hum. Resour. 59, 210–241 (2024). DOI

Kettle, S., Hernandez, M., Sanders, M., Hauser, O. & Ruda, S. Failure to CAPTCHA attention: null results from an honesty priming experiment in Guatemala. Behav. Sci. 7, 28 (2017). PubMed DOI PMC

Koessler, A.-K., Torgler, B., Feld, L. P. & Frey, B. S. Commitment to pay taxes: results from field and laboratory experiments. Eur. Econ. Rev. 115, 78–98 (2019). DOI

Martuza, J. B., Skard, S. R., Løvlie, L. & Thorbjørnsen, H. Do honesty-nudges really work? A large-scale field experiment in an insurance context. J. Consum. Behav. 21, 927–951 (2022). DOI

Shu, L. L., Mazar, N., Gino, F., Ariely, D. & Bazerman, M. H. Signing at the beginning makes ethics salient and decreases dishonest self-reports in comparison to signing at the end. Proc. Natl Acad. Sci. USA 109, 15197–15200 (2012); retraction 118, e2115397118 (2021).

Peer, E., Mazar, N., Feldman, Y. & Ariely, D. How pledges reduce dishonesty: the role of involvement and identification. J. Exp. Soc. Psychol. 113, 104614 (2024). DOI

Jacquemet, N., Luchini, S., Rosaz, J. & Shogren, J. F. Truth-telling under oath. Manag. Sci. 65, 426–438 (2018). DOI

Zickfeld, J. H., Ścigala, K. A., Weiss, A., Michael, J. & Mitkidis, P. Commitment to honesty oaths decreases dishonesty, but commitment to another individual does not affect dishonesty. Commun. Psychol. 1, 27 (2023). PubMed DOI PMC

Schild, C., Heck, D. W., Scigala, K. A. & Zettler, I. Revisiting REVISE: (re)testing unique and combined effects of reminding, visibility, and self-engagement manipulations on cheating behavior. J. Econ. Psychol. 75, 102161 (2020). DOI

Skowronek, S. E. DENIAL: a conceptual framework to improve honesty nudges. Curr. Opin. Psychol. https://doi.org/10.1016/j.copsyc.2022.101456 (2022).

Le Maux, B. & Necker, S. Honesty nudges: effect varies with content but not with timing. J. Econ. Behav. Organ. 207, 433–456 (2023). DOI

Peer, E. & Feldman, Y. Honesty pledges for the behaviorally-based regulation of dishonesty. J. Eur. Public Policy 28, 761–781 (2021). DOI

Duckworth, A. L. & Milkman, K. L. A guide to megastudies. PNAS Nexus 1, pgac214 (2022). PubMed DOI PMC

Milkman, K. L. et al. Megastudies improve the impact of applied behavioural science. Nature 600, 478–483 (2021). PubMed DOI PMC

Milkman, K. L. et al. A 680,000-person megastudy of nudges to encourage vaccination in pharmacies. Proc. Natl Acad. Sci. USA 119, e2115126119 (2022). PubMed DOI PMC

Alm, J. & Malézieux, A. 40 years of tax evasion games: a meta-analysis. Exp. Econ. 24, 699–750 (2021). DOI

Alm, J., Bloomquist, K. M. & McKee, M. On the external validity of laboratory tax compliance experiments. Econ. Inq. 53, 1170–1186 (2015). DOI

Bloomquist, K. M. A comparative analysis of reporting compliance behavior in laboratory experiments and random taxpayer audits. In Proc. Annual Conference on Taxation and Minutes of the Annual Meeting of the National Tax Association Vol. 102, 113–122 (National Tax Association, 2009).

Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for psychological research: a tutorial. Adv. Methods Pract. Psychol. Sci. 1, 259–269 (2018). DOI

Schweitzer, M. E. & Hsee, C. K. Stretching the truth: elastic justification and motivated communication of uncertain information. J. Risk Uncertain. 25, 185–201 (2002). DOI

Gollwitzer, P. M. & Sheeran, P. Implementation intentions and goal achievement: a meta-analysis of effects and processes. Adv. Exp. Soc. Psychol. 38, 69–119 (2006). DOI

Mitkidis, P., Sørensen, J., Nielbo, K. L., Andersen, M. & Lienard, P. Collective-goal ascription increases cooperation in humans. PLoS ONE 8, e64776 (2013). PubMed DOI PMC

Mulder, L. B., Jordan, J. & Rink, F. The effect of specific and general rules on ethical decisions. Organ. Behav. Hum. Decis. Process. 126, 115–129 (2015). DOI

Mulder, L. B., Rink, F. & Jordan, J. Constraining temptation: how specific and general rules mitigate the effect of personal gain on unethical behavior. J. Econ. Psychol. 76, 102242 (2020). DOI

Verschuere, B. et al. Registered replication report on Mazar, Amir, and Ariely (2008). Adv. Methods Pract. Psychol. Sci. 1, 299–317 (2018). DOI

Zhao, J., Dong, Z. & Yu, R. Don’t remind me: when explicit and implicit moral reminders enhance dishonesty. J. Exp. Soc. Psychol. 85, 103895 (2019). DOI

Toor, N. S. Comparison of Dishonesty Interventions: A Conceptual Replication Study. MA thesis, Univ. Chicago (2022); https://doi.org/10.6082/uchicago.5110

Jamison, J. C., Mazar, N. & Sen, I. Applying behavioral insights to tax compliance: experimental evidence from Latvia. J. Tax. Adm. 6, 6–32 (2021).

Ayal, S., Celse, J. & Hochman, G. Crafting messages to fight dishonesty: a field investigation of the effects of social norms and watching eye cues on fare evasion. Organ. Behav. Hum. Decis. Process. 166, 9–19 (2021). DOI

Lois, G. & Wessa, M. Honest mistake or perhaps not: the role of descriptive and injunctive norms on the magnitude of dishonesty. J. Behav. Decis. Mak. 34, 20–34 (2021). DOI

Hallsworth, M., List, J. A., Metcalfe, R. D. & Vlaev, I. The behavioralist as tax collector: using natural field experiments to enhance tax compliance. J. Public Econ. 148, 14–31 (2017). DOI

Brudermann, T., Bartel, G., Fenzl, T. & Seebauer, S. Eyes on social norms: a field study on an honor system for newspaper sale. Theory Decis. 79, 285–306 (2015). DOI

Köbis, N. C., Troost, M., Brandt, C. O. & Soraperra, I. Social norms of corruption in the field: social nudges on posters can help to reduce bribery. Behav. Public Policy 6, 597–624 (2022). DOI

Fellner, G., Sausgruber, R. & Traxler, C. Testing enforcement strategies in the field: threat, moral appeal and social information. J. Eur. Econ. Assoc. 11, 634–660 (2013). DOI

Dimant, E., Van Kleef, G. A. & Shalvi, S. Requiem for a nudge: framing effects in nudging honesty. J. Econ. Behav. Organ. 172, 247–266 (2020). DOI

Castro, L. & Scartascini, C. Tax compliance and enforcement in the pampas evidence from a field experiment. J. Econ. Behav. Organ. 116, 65–82 (2015). DOI

Hernandez, M., Jamison, J., Korczyc, E., Mazar, N. & Sormani, R. Applying Behavioral Insights to Improve Tax Collection: Experimental Evidence from Poland Working Paper (World Bank, 2017).

Köbis, N., Starke, C. & Rahwan, I. The promise and perils of using artificial intelligence to fight corruption. Nat. Mach. Intell. 4, 418–424 (2022). DOI

Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).

Guzikevits, M. & Choshen-Hillel, S. The optics of lying: how pursuing an honest social image shapes dishonest behavior. Curr. Opin. Psychol. 46, 101384 (2022). PubMed DOI

Alm, J. & Torgler, B. Culture differences and tax morale in the United States and in Europe. J. Econ. Psychol. 27, 224–246 (2006). DOI

Heck, D. W., Thielmann, I., Moshagen, M. & Hilbig, B. E. Who lies? A large-scale reanalysis linking basic personality traits to unethical decision making. Judgm. Decis. Mak. 13, 356–371 (2018). DOI

Capraro, V. Gender differences in lying in sender–receiver games: a meta-analysis. Judgm. Decis. Mak. 13, 345–355 (2018). DOI

DellaVigna, S. & Pope, D. Predicting experimental results: who knows what? J. Polit. Econ. 126, 2410–2456 (2018). DOI

Götz, F. M., Gosling, S. D. & Rentfrow, P. J. Small effects: the indispensable foundation for a cumulative psychological science. Perspect. Psychol. Sci. 17, 205–215 (2022). PubMed DOI

Zizzo, D. J. Experimenter demand effects in economic experiments. Exp. Econ. 13, 75–98 (2010). DOI

Jacquemet, N., James, A. G., Luchini, S., Murphy, J. J. & Shogren, J. F. Do truth-telling oaths improve honesty in crowd-working? PLoS ONE 16, e0244958 (2021). PubMed DOI PMC

Jacquemet, N., Luchini, S., Rosaz, J. & Shogren, J. F. Can we commit future managers to honesty? Front. Psychol. 12, 701627 (2021). PubMed DOI PMC

Jacquemet, N., Joule, R.-V., Luchini, S. & Shogren, J. F. Preference elicitation under oath. J. Environ. Econ. Manag. 65, 110–132 (2013). DOI

Jacquemet, N., James, A., Luchini, S. & Shogren, J. F. Referenda under oath. Environ. Resour. Econ. 67, 479–504 (2017). DOI

Corrigan-Gibbs, H., Gupta, N., Northcutt, C., Cutrell, E. & Thies, W. Deterring cheating in online environments. ACM Trans. Comput. Hum. Interact. 22, 28 (2015). DOI

Uhlmann, E. L. et al. Scientific utopia III: crowdsourcing science. Perspect. Psychol. Sci. 14, 711–733 (2019). PubMed DOI

Palan, S. & Schitter, C. Prolific.ac—a subject pool for online experiments. J. Behav. Exp. Financ. 17, 22–27 (2018). DOI

Peer, E., Rothschild, D., Gordon, A., Evernden, Z. & Damer, E. Data quality of platforms and panels for online behavioral research. Behav. Res. Methods 54, 1643–1662 (2022). PubMed DOI

De Vries, R. E. The 24-item brief HEXACO inventory (BHI). J. Res. Pers. 47, 871–880 (2013). DOI

Yamagishi, T. & Yamagishi, M. Trust and commitment in the United States and Japan. Motiv. Emot. 18, 129–166 (1994). DOI

Skowronek, S. About 70% of participants know that the canonical deception paradigms measure dishonesty. Acad. Manag. Proc. https://doi.org/10.5465/AMBPP.2021.107 (2021).

Lakens, D. Sample size justification. Collabra Psychol. 8, 33267 (2022). DOI

Kubinec, R. Ordered beta regression: a parsimonious, well-fitting model for continuous data with lower and upper bounds. Polit. Anal. 31, 519–536 (2023). DOI

Bolker, B. Getting Started with the glmmTMB Package (R Foundation for Statistical Computing, 2016).

Zickfeld, J. MegaOath: datasets. Zenodo https://doi.org/10.5281/zenodo.13329833 (2024).

Zickfeld, J. H. Datasets to ‘Effectiveness of ex-ante honesty oaths in reducing dishonesty depends on content’. Zenodo https://zenodo.org/doi/10.5281/zenodo.10777159 (2024).

R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2022).

Robinson, D., Hayes, A. & Couch, S. broom: Convert statistical objects into tidy tibbles. R package version 1.0.4 https://CRAN.R-project.org/package=broom (2023).

Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. dplyr: A grammar of data manipulation. R package version 1.1.1 https://CRAN.R-project.org/package=dplyr (2023).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0 https://CRAN.R-project.org/package=ggpubr (2020).

Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017). DOI

Firke, S. janitor: Simple tools for examining and cleaning dirty data. R package version 2.1.0 https://CRAN.R-project.org/package=janitor (2021).

Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

Arel-Bundock, V. marginaleffects: Predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 0.14.0 https://CRAN.R-project.org/package=marginaleffects (2023).

Taketomi, N. & Emura, T. meta.shrinkage: Meta-analyses for simultaneously estimating individual means. R package version 0.1.4 https://CRAN.R-project.org/package=meta.shrinkage (2023).

Aust, F. & Barth, M. papaja: Prepare reproducible APA journal articles with R Markdown. R package version 0.1.1 https://github.com/crsh/papaja (2022).

Wickham, H. & Henry, L. purrr: Functional programming tools. R package version 1.0.1 https://CRAN.R-project.org/package=purrr (2023).

Revelle, W. psych: Procedures for psychological, psychometric, and personality research. R package version 2.2.5 https://CRAN.R-project.org/package=psych (2022).

Ginn, J., O’Brien, J. & Silge, J. qualtRics: Download ‘qualtrics’ survey data. R package version 3.1.7 https://CRAN.R-project.org/package=qualtRics (2022).

Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version 2.8.14 https://CRAN.R-project.org/package=sjPlot (2023).

Wickham, H. stringr: Simple, consistent wrappers for common string operations. R package version 1.5.0 https://CRAN.R-project.org/package=stringr (2022).

Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019). DOI

van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. https://doi.org/10.18637/jss.v045.i03 (2011).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...