Salbutamol attenuates arrhythmogenic effect of aminophylline in a hPSC-derived cardiac model
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
A4L_ACTIONS 964997
Horizon 2020
A4L_ACTIONS 964997
Horizon 2020
A4L_ACTIONS 964997
Horizon 2020
and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1547/2023
Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1547/2023
Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1547/2023
Ministerstvo Školství, Mládeže a Tělovýchovy
and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1547/2023
Ministerstvo Školství, Mládeže a Tělovýchovy
UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974),
European Regional Development Fund
UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974),
European Regional Development Fund
UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974),
European Regional Development Fund
NU20-06-001
Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001
Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001
Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001
Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001
Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001
Ministerstvo Zdravotnictví Ceské Republiky
A4L_Bridge101136453
HORIZON EUROPE European Research Council
MUQUABIS GA no. 101070546
HORIZON EUROPE European Research Council
A4L_Bridge101136453
HORIZON EUROPE European Research Council
A4L_Bridge101136453
HORIZON EUROPE European Research Council
EXCELES, No. LX22NPO5104
HORIZON EUROPE Framework Programme
EXCELES, No. LX22NPO5104
HORIZON EUROPE Framework Programme
PubMed
39521810
PubMed Central
PMC11550379
DOI
10.1038/s41598-024-76846-4
PII: 10.1038/s41598-024-76846-4
Knihovny.cz E-resources
- Keywords
- Aminophylline, Arrhythmogenic effects, Atomic force microscopy, iPSC, Biomechanical properties, Cardiomyocytes, Drug cardiotoxicity, HESC, Pulmonary drug screening, Salbutamol,
- MeSH
- Albuterol * pharmacology MeSH
- Aminophylline * pharmacology MeSH
- Bronchodilator Agents pharmacology MeSH
- Cell Line MeSH
- Myocytes, Cardiac drug effects metabolism MeSH
- Humans MeSH
- Microscopy, Atomic Force MeSH
- Pluripotent Stem Cells drug effects cytology MeSH
- Arrhythmias, Cardiac * drug therapy MeSH
- Heart Rate drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Albuterol * MeSH
- Aminophylline * MeSH
- Bronchodilator Agents MeSH
The combination of aminophylline and salbutamol is frequently used in clinical practice in the treatment of obstructive lung diseases. While the side effects (including arrhythmias) of the individual bronchodilator drugs were well described previously, the side effects of combined treatment are almost unknown. We aimed to study the arrhythmogenic potential of combined aminophylline and salbutamol treatment in vitro. For this purpose, we used the established atomic force microscopy (AFM) model coupled with cardiac organoids derived from human pluripotent stem cells (hPSC-CMs). We focused on the chronotropic, inotropic, and arrhythmogenic effects of salbutamol alone and aminophylline and salbutamol combined treatment. We used a method based on heart rate/beat rate variability (HRV/BRV) analysis to detect arrhythmic events in the hPSC-CM based AFM recordings. Salbutamol and aminophylline had a synergistic chronotropic and inotropic effect compared to the effects of monotherapy. Our main finding was that salbutamol reduced the arrhythmogenic effect of aminophylline, most likely mediated by endothelial nitric oxide synthase activated by beta-2 adrenergic receptors. These findings were replicated and confirmed using hPSC-CM derived from two cell lines (CCTL4 and CCTL12). Data suggest that salbutamol as an add-on therapy may not only deliver a bronchodilator effect but also increase the cardiovascular safety of aminophylline, as salbutamol reduces its arrhythmogenic potential.
CEITEC MU Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
See more in PubMed
Zatloukal, J. et al. Chronic obstructive pulmonary disease - diagnosis and management of stable disease; a personalized approach to care, using the treatable traits concept based on clinical phenotypes. Position paper of the Czech Pneumological and Phthisiological Society. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov.164, 325–356 (2020). PubMed
Levy, M. L. et al. Key recommendations for primary care from the 2022 Global Initiative for Asthma (GINA) update. NPJ Prim. Care Respir. Med.33, 7 (2023). PubMed PMC
2023 GOLD Report. Global Initiative for Chronic Obstructive Lung Disease - GOLDhttps://goldcopd.org/2023-gold-report-2/.
Bittar, G. & Friedman, H. S. The arrhythmogenicity of theophylline. A multivariate analysis of clinical determinants. Chest99, 1415–1420 (1991). PubMed
Shannon, M. Life-threatening events after theophylline overdose: a 10-year prospective analysis. Arch. Intern. Med.159, 989–994 (1999). PubMed
Klimovic, S. et al. Aminophylline Induces Two Types of Arrhythmic Events in Human Pluripotent Stem Cell–Derived Cardiomyocytes. Front. Pharmacol.12, (2022). PubMed PMC
Rodrigo, C. & Rodrigo, G. Treatment of acute asthma. Lack of therapeutic benefit and increase of the toxicity from aminophylline given in addition to high doses of salbutamol delivered by metered-dose inhaler with a spacer. Chest106, 1071–1076 (1994). PubMed
White, S. M., Constantin, P. E. & Claycomb, W. C. Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am. J. Physiol.-Heart Circ. Physiol.286, H823–H829 (2004). PubMed
Nair, P., Milan, S. J. & Rowe, B. H. Addition of intravenous aminophylline to inhaled beta(2)-agonists in adults with acute asthma. Cochrane Database Syst. Rev.12, CD002742 (2012). PubMed PMC
Price, A. H. & Clissold, S. P. Salbutamol in the 1980s. A reappraisal of its clinical efficacy. Drugs38, 77–122 (1989). PubMed
Deacon, S. P. Metabolic effects of salbutamol. Br. Med. J.1, 639 (1977). PubMed PMC
Engel, B., Einstein, R. & Goodman, A. H. Inotropic selectivity of salbutamol and terbutaline in anaesthetised, areflexic dogs. Eur. J. Pharmacol.116, 97–104 (1985). PubMed
Overgaard, K., Nielsen, O. B., Flatman, J. A. & Clausen, T. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K + pump and Na+/K + gradients. J. Physiol.518, 215–225 (1999). PubMed PMC
Mettauer, B., Rouleau, J. L. & Burgess, J. H. Detrimental arrhythmogenic and sustained beneficial hemodynamic effects of oral salbutamol in patients with chronic congestive heart failure. Am. Heart J.109, 840–847 (1985). PubMed
Uysal, E., Solak, S., Carus, M., Uzun, N. & Cevik, E. Salbutamol Abuse is Associated with Ventricular Fibrillation. Turk. J. Emerg. Med.15, 87–89 (2016). PubMed PMC
Bébarová, M. et al. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn. Schmiedebergs Arch. Pharmacol.390, 471–481 (2017). PubMed
Caluori, G. et al. Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens. Bioelectron.124–125, 129–135 (2019). PubMed
Pesl, M. et al. Phenotypic assays for analyses of pluripotent stem cell–derived cardiomyocytes. J. Mol. Recognit.30, e2602 (2017). PubMed
Pribyl, J. et al. Biomechanical Characterization of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Use of Atomic Force Microscopy. Methods Mol. Biol. Clifton NJ1886, 343–353 (2019). PubMed
Ramalho, N. J. D. et al. Aminophylline at clinically relevant concentrations affects inward rectifier potassium current in a dual way. Pflugers Arch.474, 303–313 (2022). PubMed
International Stem Cell Initiative et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol.25, 803–816 (2007). PubMed
Pesl, M. et al. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing. Biosens. Bioelectron.85, 751–757 (2016). PubMed
Daniil, K., Simon, K., Deborah, B., Vladimír, R., Martin, P., and Jan, P. A comprehensive system of algorithms for characterization of cardiomyocyte mechanical and electrical function. Available at SSRN 10.2139/ssrn.4784992.
Plesinger, F., Jurco, J., Halamek, J. & Jurak, P. Signal Plant: an open signal processing software platform. Physiol. Meas.37, N38–N48 (2016). PubMed
Shaffer, F. & Ginsberg, J. P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health5, 258 (2017). PubMed PMC
Malpas, S. C. & Maling, T. J. B. Heart-Rate Variability and Cardiac Autonomic Function in Diabetes. Diabetes39, 1177–1181 (1990). PubMed
Highlights — pyHRV - OpenSource Python Toolbox for Heart Rate Variability 0.4 documentation. https://pyhrv.readthedocs.io/en/latest/index.html.
Acimovic, I. et al. Post-Translational Modifications and Diastolic Calcium Leak Associated to the Novel RyR2-D3638A Mutation Lead to CPVT in Patient-Specific hiPSC-Derived Cardiomyocytes. J. Clin. Med.7, 423 (2018). PubMed PMC
Cullum, V. A., Farmer, J. B., Jack, D. & Levy, G. P. Salbutamol: a new, selective β-adrenoceptive receptor stimulant. Br. J. Pharmacol.35, 141–151 (1969). PubMed PMC
Corea, L. et al. Noninvasive assessment of chronotropic and inotropic response to preferential beta-1 and beta-2 adrenoceptor stimulation. Clin. Pharmacol. Ther.35, 776–781 (1984). PubMed
Libretto, S. E. A review of the toxicology of salbutamol (albuterol). Arch. Toxicol.68, 213–216 (1994). PubMed
Baker, J. G. The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. Br. J. Pharmacol.144, 317–322 (2005). PubMed PMC
Johnson, D. B., Merrell, B. J. & Bounds, C. G. Albuterol. in StatPearls (StatPearls Publishing, Treasure Island (FL), 2022). PubMed
Moniotte, S. et al. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation103, 1649–1655 (2001). PubMed
Bristow, M. R. et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ. Res.59, 297–309 (1986). PubMed
Jelinkova, S. et al. DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in vitro Human Cardiac Pathophysiology. Front. Bioeng. Biotechnol.8, 535 (2020). PubMed PMC
Post, S. R., Hammond, H. K. & Insel, P. A. β-Adrenergic receptors and receptor signaling in heart failure. Annu. Rev. Pharmacol. Toxicol.39, 343–360 (1999). PubMed
Lucia, C. de, Eguchi, A. & Koch, W. J. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front. Pharmacol.9, (2018). PubMed PMC
Keefe, J. A., Moore, O. M., Ho, K. S. & Wehrens, X. H. T. Role of Ca2 + in healthy and pathologic cardiac function: from normal excitation–contraction coupling to mutations that cause inherited arrhythmia. Arch. Toxicol.97, 73–92 (2023). PubMed PMC
Lorenz, K., Rosner, M. R., Brand, T. & Schmitt, J. P. Raf kinase inhibitor protein: lessons of a better way for β-adrenergic receptor activation in the heart. J. Physiol.595, 4073–4087 (2017). PubMed PMC
Pérez-Schindler, J., Philp, A. & Hernandez-Cascales, J. Pathophysiological relevance of the cardiac β2-adrenergic receptor and its potential as a therapeutic target to improve cardiac function. Eur. J. Pharmacol.698, 39–47 (2013). PubMed
Cerbai, E., Pino, R., Rodriguez, M. L. & Mugelli, A. Modulation of the pacemaker current If by beta-adrenoceptor subtypes in ventricular myocytes isolated from hypertensive and normotensive rats. Cardiovasc. Res.42, 121–129 (1999). PubMed
Gonzalez-Muñoz, C., Fuente, T., Medin-Aguerre, S. & Hernández-Cascales, J. The increase in rat ventricular automaticity induced by salbutamol is mediated through β1- but not β2-adrenoceptors: Role of phosphodiesterases. Life Sci.88, 1095–1101 (2011). PubMed
Akhtar, A. et al. The Acute Effects of the Use of Salbutamol and Ipratropium on the Heart Rates of Patients With Obstructive Airway Disease. Cureus15, e46409 (2023). PubMed PMC
Rabbany, M. A. et al. Comparative Efficacy of Levosalbutamol and Racemic Salbutamol in the Treatment of Acute Exacerbation of Asthma. Mymensingh Med. J. MMJ32, 10–17 (2023). PubMed
Cazzola, M., Rogliani, P. & Matera, M. G. Ultra-LABAs for the treatment of asthma. Respir. Med.156, 47–52 (2019). PubMed
Matera, M. G., Page, C. P., Calzetta, L., Rogliani, P. & Cazzola, M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol. Rev.72, 218–252 (2020). PubMed
Matera, M. G., Rogliani, P., Calzetta, L. & Cazzola, M. Safety Considerations with Dual Bronchodilator Therapy in COPD: An Update. Drug Saf.39, 501–508 (2016). PubMed
Ukena, D., Schudt, C. & Sybrecht, G. W. Adenosine receptor-blocking xanthines as inhibitors of phosphodiesterase isozymes. Biochem. Pharmacol.45, 847–851 (1993). PubMed
Domeier, T. L., Maxwell, J. T. & Blatter, L. A. β-Adrenergic stimulation increases the intra-sarcoplasmic reticulum Ca2 + threshold for Ca2 + wave generation. J. Physiol.590, 6093–6108 (2012). PubMed PMC
Colombe, A.-S. & Pidoux, G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells10, 922 (2021). PubMed PMC
Sucharov, C. C., Dockstader, K., Nunley, K., McKinsey, T. A. & Bristow, M. β-adrenergic receptor stimulation and activation of PKA protect against α1-adrenergic mediated phosphorylation of PKD and HDAC5. J. Card. Fail.17, 592–600 (2011). PubMed PMC
Crespo, P., Cachero, T. G., Xu, N. & Gutkind, J. S. Dual Effect of β-Adrenergic Receptors on Mitogen-activated Protein kinase: evidence for a βγ-dependent activation and a gαs-camp-mediated inhibition (∗). J. Biol. Chem.270, 25259–25265 (1995). PubMed
Molenaar, P., Chen, L. & Parsonage, W. A. Cardiac implications for the use of β2-adrenoceptor agonists for the management of muscle wasting. Br. J. Pharmacol.147, 583–586 (2006). PubMed PMC
Balligand, J.-L. Regulation of cardiac β-adrenergic response by nitric oxide. Cardiovasc. Res.43, 607–620 (1999). PubMed
Ghasemi, A. & Jeddi, S. Quantitative aspects of nitric oxide production in the heart. Mol. Biol. Rep.49, 11113–11122 (2022). PubMed
Domeier, T. L., Maxwell, J. T. & Blatter, L. A. β-Adrenergic stimulation increases the intra-sarcoplasmic reticulum Ca2 + threshold for Ca2 + wave generation. J. Physiol.590, 6093–6108 (2012). PubMed PMC
Tamargo, J., Caballero, R., Gómez, R. & Delpón, E. Cardiac electrophysiological effects of nitric oxide. Cardiovasc. Res.87, 593–600 (2010). PubMed
Bhushan, S. et al. Selective β2-Adrenoreceptor Stimulation Attenuates Myocardial Cell Death and Preserves Cardiac Function After Ischemia–Reperfusion Injury. Arterioscler. Thromb. Vasc. Biol.32, 1865–1874 (2012). PubMed PMC
E. Burger, D. & Feng, Q. Protective Role of Nitric Oxide Against Cardiac Arrhythmia - An Update. Open Nitric Oxide J.3, (2011).
García-Morales, V., Luaces-Regueira, M. & Campos-Toimil, M. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells. Biochem. Pharmacol.145, 94–101 (2017). PubMed
Huerta, C., Lanes, S. F. & García Rodríguez, L. A. Respiratory medications and the risk of cardiac arrhythmias. Epidemiol. Camb. Mass16, 360–366 (2005). PubMed
Insulander, P., Juhlin-Dannfelt, A., Freyschuss, U. & Vallin, H. Electrophysiologic effects of salbutamol, a beta2-selective agonist. J. Cardiovasc. Electrophysiol.15, 316–322 (2004). PubMed
Futyma, P. How to Induce Arrhythmias with Salbutamol. in Arrhythmia Induction in the EP Lab (ed. Cismaru, G.) 115–122 (Springer International Publishing, Cham, 2019). 10.1007/978-3-319-92729-9_12.