• This record comes from PubMed

Salbutamol attenuates arrhythmogenic effect of aminophylline in a hPSC-derived cardiac model

. 2024 Nov 09 ; 14 (1) : 27399. [epub] 20241109

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
A4L_ACTIONS 964997 Horizon 2020
A4L_ACTIONS 964997 Horizon 2020
A4L_ACTIONS 964997 Horizon 2020
and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy
and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
and CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium LM2023042 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974), European Regional Development Fund
UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974), European Regional Development Fund
UP CIISB" (No. CZ.02.1.01/0.0/0.0/18_046/0015974), European Regional Development Fund
NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
NU20-06-001 Ministerstvo Zdravotnictví Ceské Republiky
A4L_Bridge101136453 HORIZON EUROPE European Research Council
MUQUABIS GA no. 101070546 HORIZON EUROPE European Research Council
A4L_Bridge101136453 HORIZON EUROPE European Research Council
A4L_Bridge101136453 HORIZON EUROPE European Research Council
EXCELES, No. LX22NPO5104 HORIZON EUROPE Framework Programme
EXCELES, No. LX22NPO5104 HORIZON EUROPE Framework Programme

Links

PubMed 39521810
PubMed Central PMC11550379
DOI 10.1038/s41598-024-76846-4
PII: 10.1038/s41598-024-76846-4
Knihovny.cz E-resources

The combination of aminophylline and salbutamol is frequently used in clinical practice in the treatment of obstructive lung diseases. While the side effects (including arrhythmias) of the individual bronchodilator drugs were well described previously, the side effects of combined treatment are almost unknown. We aimed to study the arrhythmogenic potential of combined aminophylline and salbutamol treatment in vitro. For this purpose, we used the established atomic force microscopy (AFM) model coupled with cardiac organoids derived from human pluripotent stem cells (hPSC-CMs). We focused on the chronotropic, inotropic, and arrhythmogenic effects of salbutamol alone and aminophylline and salbutamol combined treatment. We used a method based on heart rate/beat rate variability (HRV/BRV) analysis to detect arrhythmic events in the hPSC-CM based AFM recordings. Salbutamol and aminophylline had a synergistic chronotropic and inotropic effect compared to the effects of monotherapy. Our main finding was that salbutamol reduced the arrhythmogenic effect of aminophylline, most likely mediated by endothelial nitric oxide synthase activated by beta-2 adrenergic receptors. These findings were replicated and confirmed using hPSC-CM derived from two cell lines (CCTL4 and CCTL12). Data suggest that salbutamol as an add-on therapy may not only deliver a bronchodilator effect but also increase the cardiovascular safety of aminophylline, as salbutamol reduces its arrhythmogenic potential.

See more in PubMed

Zatloukal, J. et al. Chronic obstructive pulmonary disease - diagnosis and management of stable disease; a personalized approach to care, using the treatable traits concept based on clinical phenotypes. Position paper of the Czech Pneumological and Phthisiological Society. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov.164, 325–356 (2020). PubMed

Levy, M. L. et al. Key recommendations for primary care from the 2022 Global Initiative for Asthma (GINA) update. NPJ Prim. Care Respir. Med.33, 7 (2023). PubMed PMC

2023 GOLD Report. Global Initiative for Chronic Obstructive Lung Disease - GOLDhttps://goldcopd.org/2023-gold-report-2/.

Bittar, G. & Friedman, H. S. The arrhythmogenicity of theophylline. A multivariate analysis of clinical determinants. Chest99, 1415–1420 (1991). PubMed

Shannon, M. Life-threatening events after theophylline overdose: a 10-year prospective analysis. Arch. Intern. Med.159, 989–994 (1999). PubMed

Klimovic, S. et al. Aminophylline Induces Two Types of Arrhythmic Events in Human Pluripotent Stem Cell–Derived Cardiomyocytes. Front. Pharmacol.12, (2022). PubMed PMC

Rodrigo, C. & Rodrigo, G. Treatment of acute asthma. Lack of therapeutic benefit and increase of the toxicity from aminophylline given in addition to high doses of salbutamol delivered by metered-dose inhaler with a spacer. Chest106, 1071–1076 (1994). PubMed

White, S. M., Constantin, P. E. & Claycomb, W. C. Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am. J. Physiol.-Heart Circ. Physiol.286, H823–H829 (2004). PubMed

Nair, P., Milan, S. J. & Rowe, B. H. Addition of intravenous aminophylline to inhaled beta(2)-agonists in adults with acute asthma. Cochrane Database Syst. Rev.12, CD002742 (2012). PubMed PMC

Price, A. H. & Clissold, S. P. Salbutamol in the 1980s. A reappraisal of its clinical efficacy. Drugs38, 77–122 (1989). PubMed

Deacon, S. P. Metabolic effects of salbutamol. Br. Med. J.1, 639 (1977). PubMed PMC

Engel, B., Einstein, R. & Goodman, A. H. Inotropic selectivity of salbutamol and terbutaline in anaesthetised, areflexic dogs. Eur. J. Pharmacol.116, 97–104 (1985). PubMed

Overgaard, K., Nielsen, O. B., Flatman, J. A. & Clausen, T. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K + pump and Na+/K + gradients. J. Physiol.518, 215–225 (1999). PubMed PMC

Mettauer, B., Rouleau, J. L. & Burgess, J. H. Detrimental arrhythmogenic and sustained beneficial hemodynamic effects of oral salbutamol in patients with chronic congestive heart failure. Am. Heart J.109, 840–847 (1985). PubMed

Uysal, E., Solak, S., Carus, M., Uzun, N. & Cevik, E. Salbutamol Abuse is Associated with Ventricular Fibrillation. Turk. J. Emerg. Med.15, 87–89 (2016). PubMed PMC

Bébarová, M. et al. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn. Schmiedebergs Arch. Pharmacol.390, 471–481 (2017). PubMed

Caluori, G. et al. Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens. Bioelectron.124–125, 129–135 (2019). PubMed

Pesl, M. et al. Phenotypic assays for analyses of pluripotent stem cell–derived cardiomyocytes. J. Mol. Recognit.30, e2602 (2017). PubMed

Pribyl, J. et al. Biomechanical Characterization of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Use of Atomic Force Microscopy. Methods Mol. Biol. Clifton NJ1886, 343–353 (2019). PubMed

Ramalho, N. J. D. et al. Aminophylline at clinically relevant concentrations affects inward rectifier potassium current in a dual way. Pflugers Arch.474, 303–313 (2022). PubMed

International Stem Cell Initiative et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol.25, 803–816 (2007). PubMed

Pesl, M. et al. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing. Biosens. Bioelectron.85, 751–757 (2016). PubMed

Daniil, K., Simon, K., Deborah, B., Vladimír, R., Martin, P., and Jan, P. A comprehensive system of algorithms for characterization of cardiomyocyte mechanical and electrical function. Available at SSRN 10.2139/ssrn.4784992.

Plesinger, F., Jurco, J., Halamek, J. & Jurak, P. Signal Plant: an open signal processing software platform. Physiol. Meas.37, N38–N48 (2016). PubMed

Shaffer, F. & Ginsberg, J. P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health5, 258 (2017). PubMed PMC

Malpas, S. C. & Maling, T. J. B. Heart-Rate Variability and Cardiac Autonomic Function in Diabetes. Diabetes39, 1177–1181 (1990). PubMed

Highlights — pyHRV - OpenSource Python Toolbox for Heart Rate Variability 0.4 documentation. https://pyhrv.readthedocs.io/en/latest/index.html.

Acimovic, I. et al. Post-Translational Modifications and Diastolic Calcium Leak Associated to the Novel RyR2-D3638A Mutation Lead to CPVT in Patient-Specific hiPSC-Derived Cardiomyocytes. J. Clin. Med.7, 423 (2018). PubMed PMC

Cullum, V. A., Farmer, J. B., Jack, D. & Levy, G. P. Salbutamol: a new, selective β-adrenoceptive receptor stimulant. Br. J. Pharmacol.35, 141–151 (1969). PubMed PMC

Corea, L. et al. Noninvasive assessment of chronotropic and inotropic response to preferential beta-1 and beta-2 adrenoceptor stimulation. Clin. Pharmacol. Ther.35, 776–781 (1984). PubMed

Libretto, S. E. A review of the toxicology of salbutamol (albuterol). Arch. Toxicol.68, 213–216 (1994). PubMed

Baker, J. G. The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. Br. J. Pharmacol.144, 317–322 (2005). PubMed PMC

Johnson, D. B., Merrell, B. J. & Bounds, C. G. Albuterol. in StatPearls (StatPearls Publishing, Treasure Island (FL), 2022). PubMed

Moniotte, S. et al. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation103, 1649–1655 (2001). PubMed

Bristow, M. R. et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ. Res.59, 297–309 (1986). PubMed

Jelinkova, S. et al. DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in vitro Human Cardiac Pathophysiology. Front. Bioeng. Biotechnol.8, 535 (2020). PubMed PMC

Post, S. R., Hammond, H. K. & Insel, P. A. β-Adrenergic receptors and receptor signaling in heart failure. Annu. Rev. Pharmacol. Toxicol.39, 343–360 (1999). PubMed

Lucia, C. de, Eguchi, A. & Koch, W. J. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front. Pharmacol.9, (2018). PubMed PMC

Keefe, J. A., Moore, O. M., Ho, K. S. & Wehrens, X. H. T. Role of Ca2 + in healthy and pathologic cardiac function: from normal excitation–contraction coupling to mutations that cause inherited arrhythmia. Arch. Toxicol.97, 73–92 (2023). PubMed PMC

Lorenz, K., Rosner, M. R., Brand, T. & Schmitt, J. P. Raf kinase inhibitor protein: lessons of a better way for β-adrenergic receptor activation in the heart. J. Physiol.595, 4073–4087 (2017). PubMed PMC

Pérez-Schindler, J., Philp, A. & Hernandez-Cascales, J. Pathophysiological relevance of the cardiac β2-adrenergic receptor and its potential as a therapeutic target to improve cardiac function. Eur. J. Pharmacol.698, 39–47 (2013). PubMed

Cerbai, E., Pino, R., Rodriguez, M. L. & Mugelli, A. Modulation of the pacemaker current If by beta-adrenoceptor subtypes in ventricular myocytes isolated from hypertensive and normotensive rats. Cardiovasc. Res.42, 121–129 (1999). PubMed

Gonzalez-Muñoz, C., Fuente, T., Medin-Aguerre, S. & Hernández-Cascales, J. The increase in rat ventricular automaticity induced by salbutamol is mediated through β1- but not β2-adrenoceptors: Role of phosphodiesterases. Life Sci.88, 1095–1101 (2011). PubMed

Akhtar, A. et al. The Acute Effects of the Use of Salbutamol and Ipratropium on the Heart Rates of Patients With Obstructive Airway Disease. Cureus15, e46409 (2023). PubMed PMC

Rabbany, M. A. et al. Comparative Efficacy of Levosalbutamol and Racemic Salbutamol in the Treatment of Acute Exacerbation of Asthma. Mymensingh Med. J. MMJ32, 10–17 (2023). PubMed

Cazzola, M., Rogliani, P. & Matera, M. G. Ultra-LABAs for the treatment of asthma. Respir. Med.156, 47–52 (2019). PubMed

Matera, M. G., Page, C. P., Calzetta, L., Rogliani, P. & Cazzola, M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol. Rev.72, 218–252 (2020). PubMed

Matera, M. G., Rogliani, P., Calzetta, L. & Cazzola, M. Safety Considerations with Dual Bronchodilator Therapy in COPD: An Update. Drug Saf.39, 501–508 (2016). PubMed

Ukena, D., Schudt, C. & Sybrecht, G. W. Adenosine receptor-blocking xanthines as inhibitors of phosphodiesterase isozymes. Biochem. Pharmacol.45, 847–851 (1993). PubMed

Domeier, T. L., Maxwell, J. T. & Blatter, L. A. β-Adrenergic stimulation increases the intra-sarcoplasmic reticulum Ca2 + threshold for Ca2 + wave generation. J. Physiol.590, 6093–6108 (2012). PubMed PMC

Colombe, A.-S. & Pidoux, G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells10, 922 (2021). PubMed PMC

Sucharov, C. C., Dockstader, K., Nunley, K., McKinsey, T. A. & Bristow, M. β-adrenergic receptor stimulation and activation of PKA protect against α1-adrenergic mediated phosphorylation of PKD and HDAC5. J. Card. Fail.17, 592–600 (2011). PubMed PMC

Crespo, P., Cachero, T. G., Xu, N. & Gutkind, J. S. Dual Effect of β-Adrenergic Receptors on Mitogen-activated Protein kinase: evidence for a βγ-dependent activation and a gαs-camp-mediated inhibition (∗). J. Biol. Chem.270, 25259–25265 (1995). PubMed

Molenaar, P., Chen, L. & Parsonage, W. A. Cardiac implications for the use of β2-adrenoceptor agonists for the management of muscle wasting. Br. J. Pharmacol.147, 583–586 (2006). PubMed PMC

Balligand, J.-L. Regulation of cardiac β-adrenergic response by nitric oxide. Cardiovasc. Res.43, 607–620 (1999). PubMed

Ghasemi, A. & Jeddi, S. Quantitative aspects of nitric oxide production in the heart. Mol. Biol. Rep.49, 11113–11122 (2022). PubMed

Domeier, T. L., Maxwell, J. T. & Blatter, L. A. β-Adrenergic stimulation increases the intra-sarcoplasmic reticulum Ca2 + threshold for Ca2 + wave generation. J. Physiol.590, 6093–6108 (2012). PubMed PMC

Tamargo, J., Caballero, R., Gómez, R. & Delpón, E. Cardiac electrophysiological effects of nitric oxide. Cardiovasc. Res.87, 593–600 (2010). PubMed

Bhushan, S. et al. Selective β2-Adrenoreceptor Stimulation Attenuates Myocardial Cell Death and Preserves Cardiac Function After Ischemia–Reperfusion Injury. Arterioscler. Thromb. Vasc. Biol.32, 1865–1874 (2012). PubMed PMC

E. Burger, D. & Feng, Q. Protective Role of Nitric Oxide Against Cardiac Arrhythmia - An Update. Open Nitric Oxide J.3, (2011).

García-Morales, V., Luaces-Regueira, M. & Campos-Toimil, M. The cAMP effectors PKA and Epac activate endothelial NO synthase through PI3K/Akt pathway in human endothelial cells. Biochem. Pharmacol.145, 94–101 (2017). PubMed

Huerta, C., Lanes, S. F. & García Rodríguez, L. A. Respiratory medications and the risk of cardiac arrhythmias. Epidemiol. Camb. Mass16, 360–366 (2005). PubMed

Insulander, P., Juhlin-Dannfelt, A., Freyschuss, U. & Vallin, H. Electrophysiologic effects of salbutamol, a beta2-selective agonist. J. Cardiovasc. Electrophysiol.15, 316–322 (2004). PubMed

Futyma, P. How to Induce Arrhythmias with Salbutamol. in Arrhythmia Induction in the EP Lab (ed. Cismaru, G.) 115–122 (Springer International Publishing, Cham, 2019). 10.1007/978-3-319-92729-9_12.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...