Serotonin and Effort-Based Decision-Making: Dissociating Behavioral Effects of 8-OH-DPAT and PCPA
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39560195
PubMed Central
PMC11629953
DOI
10.33549/physiolres.935468
PII: 935468
Knihovny.cz E-zdroje
- MeSH
- 8-hydroxy-2-(di-N-propylamino)tetralin * farmakologie MeSH
- agonisté serotoninového receptoru 5-HT1 farmakologie MeSH
- bludiště - učení účinky léků fyziologie MeSH
- chování zvířat účinky léků MeSH
- krysa rodu Rattus MeSH
- odměna MeSH
- potkani Sprague-Dawley MeSH
- rozhodování * fyziologie účinky léků MeSH
- serotonin * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 8-hydroxy-2-(di-N-propylamino)tetralin * MeSH
- agonisté serotoninového receptoru 5-HT1 MeSH
- serotonin * MeSH
Effort-based decision-making is particularly relevant to psychiatric conditions where motivation deficits are prominent features. Despite its clinical significance, the neurochemical mechanisms of this cognitive process remain unclarified. This study explores the impact of serotonin synthesis inhibition (PCPA) and modulation of serotonin release and 5-HT1A receptor agonism (8-OH-DPAT) on effort-based decision-making in rats. Adult male rats were trained in a modified T-maze task where they could obtain a high reward for climbing a mesh barrier or a low reward for no extra effort. Following training, rats received either acute 8-OH-DPAT treatment or subchronic PCPA treatment and were tested on their choices between high- and low-effort arms. The goal-arm choices and goal-arm entrance latencies were recorded. Next, homovanillic acid and 5-hydroxyindoleacetic acid, metabolites of dopamine and serotonin, respectively, were quantified in the rats' prefrontal cortex, striatum, and hippocampus. 8-OH-DPAT significantly increased low-effort, low-reward choices and increased goal-arm latency. In contrast, PCPA treatment did not affect these measures. Both PCPA and 8-OH-DPAT significantly decreased 5-hydroxyindoleacetic acid levels in the prefrontal cortex and the hippocampus. 8-OH-DPAT treatment was also associated with decreased homovanillic acid levels in the hippocampus. Our findings suggest that the overall reduction of serotonin levels alone does not affect effort-based decision-making and highlights the possible role of the hippocampus and the 5-HT1A receptor in this cognitive process.
Zobrazit více v PubMed
Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76:470. doi: 10.1016/j.neuron.2012.10.021. PubMed DOI PMC
Grahek I, Shenhav A, Musslick S, Krebs RM, Koster EHW. Motivation and cognitive control in depression. Neurosci Biobehav Rev. 2019;102:371–381. doi: 10.1016/j.neubiorev.2019.04.011. PubMed DOI PMC
Horne SJ, Topp TE, Quigley L. Depression and the willingness to expend cognitive and physical effort for rewards: A systematic review. Clin Psychol Rev. 2021;88:102065. doi: 10.1016/j.cpr.2021.102065. PubMed DOI
Culbreth AJ, Moran EK, Barch DM. Effort-based decision-making in schizophrenia. Curr Opin Behav Sci. 2018;22:1–6. doi: 10.1016/j.cobeha.2017.12.003. PubMed DOI PMC
Le Heron C, Plant O, Manohar S, Ang YS, Jackson M, Lennox G, Hu MT, Husain M. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease. Brain. 2018;141:1455–1469. doi: 10.1093/brain/awy110. PubMed DOI PMC
Colón-Semenza C, Fulford D, Ellis T. Effort-Based Decision-Making for Exercise in People with Parkinson's Disease. J Parkinsons Dis. 2021;11:725–735. doi: 10.3233/JPD-202353. PubMed DOI
Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H. Amping Up Effort: Effects of d-Amphetamine on Human Effort-Based Decision-Making. J Neurosci. 2011;31:16597–16602. doi: 10.1523/JNEUROSCI.4387-11.2011. PubMed DOI PMC
Sebold M, Nebe S, Garbusow M, Guggenmos M, Schad DJ, Beck A, Kuitunen-Paul S, et al. When Habits Are Dangerous: Alcohol Expectancies and Habitual Decision Making Predict Relapse in Alcohol Dependence. Biol Psychiatry. 2017;82:847–856. doi: 10.1016/j.biopsych.2017.04.019. PubMed DOI
Verdejo-Garcia A, Albein-Urios N, Martinez-Gonzalez JM, Civit E, De La Torre R, Lozano O. Decision-making impairment predicts 3-month hair-indexed cocaine relapse. Psychopharmacology (Berl) 2014;231:4179–4187. doi: 10.1007/s00213-014-3563-9. PubMed DOI
Stevens L, Betanzos-Espinosa P, Crunelle CL, Vergara-Moragues E, Roeyers H, Lozano O, Dom G, et al. Disadvantageous decision-making as a predictor of drop-out among cocaine-dependent individuals in long-term residential treatment. Front Psychiatry. 2013;4:64925. doi: 10.3389/fpsyt.2013.00149. PubMed DOI PMC
Soutschek A, Nadporozhskaia L, Christian P. Brain stimulation over dorsomedial prefrontal cortex modulates effort-based decision making. Cogn Affect Behav Neurosci. 2022;22:1264–1274. doi: 10.3758/s13415-022-01021-z. PubMed DOI PMC
Yao Y-W, Song K-R, Schuck NW, Li X, Fang X-Y, Zhang J-T, Heekeren HR, Bruckner R. The dorsomedial prefrontal cortex represents subjective value across effort-based and risky decision-making. Neuroimage. 2023;279:120326. doi: 10.1016/j.neuroimage.2023.120326. PubMed DOI
Schouppe N, Demanet J, Boehler CN, Richard Ridderinkhof K, Notebaert W. The Role of the Striatum in Effort-Based Decision-Making in the Absence of Reward. J Neurosci. 2014;34:2148–2154. doi: 10.1523/JNEUROSCI.1214-13.2014. PubMed DOI PMC
Johnson A, van der Meer MA, Redish AD. Integrating hippocampus and striatum in decision-making. Curr Opin Neurobiol. 2007;17:692–697. doi: 10.1016/j.conb.2008.01.003. PubMed DOI PMC
Elliott Wimmer G, Shohamy D. The striatum and beyond: contributions of the hippocampus to decision making. In: DELGADO MR, PHELPS EA, ROBBINS TW, editors. Decision Making, Affect, and Learning: Attention and Performance XXIII. Oxford Academic; Oxford: 2011. pp. 281–310. DOI
Shadlen MNN, Shohamy D. Decision Making and Sequential Sampling from Memory. Neuron. 2016;90:927–939. doi: 10.1016/j.neuron.2016.04.036. PubMed DOI PMC
Weilbächer RA, Gluth S. The Interplay of Hippocampus and Ventromedial Prefrontal Cortex in Memory-Based Decision Making. Brain Sci. 2016;7:4. doi: 10.3390/brainsci7010004. PubMed DOI PMC
Nakao T, Okada K, Kanba S. Neurobiological model of obsessive-compulsive disorder: Evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci. 2014;68:587–605. doi: 10.1111/pcn.12195. PubMed DOI
Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK, Klaver JM, et al. Serotonin Transporter Binding in Bipolar Disorder Assessed using [11C]DASB and Positron Emission Tomography. Biol Psychiatry. 2006;60:207–217. doi: 10.1016/j.biopsych.2006.05.005. PubMed DOI
Tsegay EW, Demise DG, Hailu NA, Gufue ZH. Serotonin Type 6 and 7 Receptors as a Novel Therapeutic Target for the Treatment of Schizophrenia. Neuropsychiatr Dis Treat. 2020;16:2499. doi: 10.2147/NDT.S263424. PubMed DOI PMC
Santiago RM. Depression in Parkinson's Disease is Associated with a Serotoninergic System Change Secondary to Neuroinflammation. Int J Neurol Neurother. 2016;3:061. doi: 10.23937/2378-3001/3/6/1061. DOI
Rogers RD, Tunbridge EM, Bhagwagar Z, Drevets WC, Sahakian BJ, Carter CS. Tryptophan depletion alters the decision-making of healthy volunteers through altered processing of reward cues. Neuropsychopharmacology. 2003;28:153–162. doi: 10.1038/sj.npp.1300001. PubMed DOI
Seymour B, Daw ND, Roiser JP, Dayan P, Dolan R. Serotonin Selectively Modulates Reward Value in Human Decision-Making. J Neurosci. 2012;32:5833–5842. doi: 10.1523/JNEUROSCI.0053-12.2012. PubMed DOI PMC
Long AB, Kuhn CM, Platt ML. Serotonin shapes risky decision making in monkeys. Soc Cogn Affect Neurosci. 2009;4:346–356. doi: 10.1093/scan/nsp020. PubMed DOI PMC
Cools R, Roberts AC, Robbins TW. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci. 2008;12:31–40. doi: 10.1016/j.tics.2007.10.011. PubMed DOI
Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM. The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain. Brain Res. 2003;959:58–67. doi: 10.1016/S0006-8993(02)03727-7. PubMed DOI
Browne CJ, Fletcher PJ. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor. Neuropsychopharmacology. 2016;41:2566–2576. doi: 10.1038/npp.2016.63. PubMed DOI PMC
Mignot E, Serrano A, Laude D, Elghozi JL, Dedek J, Scatton B. Measurement of 5-HIAA levels in ventricular CSF (by LCEC) and in striatum (by in vivo voltammetry) during pharmacological modifications of serotonin metabolism in the rat. J Neural Transm. 1985;62:117–124. doi: 10.1007/BF01260421. PubMed DOI
Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther. 2007;113:296–320. doi: 10.1016/j.pharmthera.2006.08.004. PubMed DOI PMC
Bardgett ME, Depenbrock M, Downs N, Points M, Green L. Dopamine modulates effort-based decision making in rats. Behav Neurosci. 2009;123:242–251. doi: 10.1037/a0014625. PubMed DOI PMC
Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16:565–566. doi: 10.1038/s41592-019-0470-3. PubMed DOI
Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MFS, Bannerman DM. Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology (Berl) 2005;179:587–596. doi: 10.1007/s00213-004-2059-4. PubMed DOI
Izquierdo A, Carlos K, Ostrander S, Rodriguez D, McCall-Craddolph A, Yagnik G, Zhou F. Impaired reward learning and intact motivation after serotonin depletion in rats. Behav Brain Res. 2012;233:494–499. doi: 10.1016/j.bbr.2012.05.032. PubMed DOI PMC
Cheng JP, Hoffman AN, Zafonte RD, Kline AE. A delayed and chronic treatment regimen with the 5-HT1A receptor agonist 8-OH-DPAT after cortical impact injury facilitates motor recovery and acquisition of spatial learning. Behav Brain Res. 2008;194:79–85. doi: 10.1016/j.bbr.2008.06.025. PubMed DOI PMC
Kant GJ, Meininger GR, Maughan KR, Wright WL, Robinson TN, Neely TM. Effects of the serotonin receptor agonists 8-OH-DPAT and TFMPP on learning as assessed using a novel water maze. Pharmacol Biochem Behav. 1996;53:385–390. doi: 10.1016/0091-3057(95)02038-1. PubMed DOI
Salamone JD, Correa M. The Neurobiology of Activational Aspects of Motivation: Exertion of Effort, Effort-Based Decision Making, and the Role of Dopamine. Annu Rev Psychol. 2024;75:1–32. doi: 10.1146/annurev-psych-020223-012208. PubMed DOI
Sharp T, Bramwell SR, Hjorth S, Grahame-Smith DG. Pharmacological characterization of 8-OH-DPAT-induced inhibition of rat hippocampal 5-HT release in vivo as measured by microdialysis. Br J Pharmacol. 1989;98:989–997. doi: 10.1111/j.1476-5381.1989.tb14630.x. PubMed DOI PMC
Hjorth S, Pettersson G. 5-HT1A autoreceptor-mediated effects of the amperozide congeners, FG5865 and FG5893, on rat brain 5-hydroxytryptamine neurochemistry in vivo. Eur J Pharmacol. 1993;238:357–367. doi: 10.1016/0014-2999(93)90867-H. PubMed DOI
Salamone JD, Correa M, Yang JH, Rotolo R, Presby R. Dopamine, effort-based choice, and behavioral economics: Basic and translational research. Front Behav Neurosci. 2018;12:340431. doi: 10.3389/fnbeh.2018.00052. PubMed DOI PMC
Rinken A, Ferré S, Terasmaa A, Owman C, Fuxe K. Serotonergic agonists behave as partial agonists at the dopamine D2 receptor. Neuroreport. 1999;10:493–495. doi: 10.1097/00001756-199902250-00009. PubMed DOI
Smith C, Cutts S. Dopamine agonist activity of 8-OH-DPAT. Arch Int Pharmacodyn Ther. 1990;306:106–113. PubMed
Nakamura K, Suzuki K, McCreary AC, Ashby CR. The acute and chronic administration of (+/−)-8-hydroxy-2-(Di-n-propylamino)tetralin significantly alters the activity of spontaneously active midbrain dopamine neurons in rats: an in vivo electrophysiological study. Synapse. 2006;59:359–367. doi: 10.1002/syn.20254. PubMed DOI
Salamone JD, Correa M. The Neurobiology of Activational Aspects of Motivation: Exertion of Effort, Effort-Based Decision Making, and the Role of Dopamine. Annu Rev Psychol. 2024;75:1–32. doi: 10.1146/annurev-psych-020223-012208. PubMed DOI
Stopper CM, Tse MTL, Montes DR, Wiedman CR, Floresco SB. Overriding phasic dopamine signals redirects action selection during risk/reward decision making. Neuron. 2014;84:177–189. doi: 10.1016/j.neuron.2014.08.033. PubMed DOI
Gozlan H, Thibault S, Laporte AM, Lima L, Hamon M. The selective 5-HT1A antagonist radioligand [3H]WAY 100635 labels both G-protein-coupled and free 5-HT1A receptors in rat brain membranes. Eur J Pharmacol. 1995;288:173–186. doi: 10.1016/0922-4106(95)90192-2. PubMed DOI
Marcinkiewicz M, Vergé D, Gozlan H, Pichat L, Hamon M. Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res. 1984;291:159–163. doi: 10.1016/0006-8993(84)90664-4. PubMed DOI
Fink KB, Göthert M. 5-HT Receptor Regulation of Neurotransmitter Release. Pharmacol Rev. 2007;60:142. doi: 10.1124/pr.59.07103. PubMed DOI
Wȩdzony K, Chocyk A, Kolasiewicz W, Maćkowiak M.Glutamatergic neurons of rat medial prefrontal cortex innervating the ventral tegmental area are positive for serotonin 5-HT1A receptor protein J Physiol Pharmacol 200758611–624.. PubMed
Homberg JR. Serotonin and decision making processes. Neurosci Biobehav Rev. 2012;36:218–236. doi: 10.1016/j.neubiorev.2011.06.001. PubMed DOI
Meneses A, Perez-Garcia G. 5-HT(1A) receptors and memory. Neurosci Biobehav Rev. 2007;31:705–727. doi: 10.1016/j.neubiorev.2007.02.001. PubMed DOI
Isayama S, Sugimoto Y, Nishiga M, Kamei C. Effects of histidine on working memory deficits induced by the 5-HT1A-receptor agonist 8-OH-DPAT. Jpn J Pharmacol. 2001;86:451–453. doi: 10.1254/jjp.86.451. PubMed DOI
Moyano S, Del Río J, Frechilla D. Role of Hippocampal CaMKII in Serotonin 5-HT1A Receptor-Mediated Learning Deficit in Rats. Neuropsychopharmacology. 2004;29:2216–2224. doi: 10.1038/sj.npp.1300504. PubMed DOI
Presby RE, Rotolo RA, Hurley EM, Ferrigno SM, Murphy CE, McMullen HP, Desai PA, et al. Sex differences in lever pressing and running wheel tasks of effort-based choice behavior in rats: Suppression of high effort activity by the serotonin transport inhibitor fluoxetine. Pharmacol Biochem Behav. 2021;202:173115. doi: 10.1016/j.pbb.2021.173115. PubMed DOI
Ago Y, Hasebe S, Hiramatsu N, Mori K, Watabe Y, Onaka Y, Hashimoto H, et al. Involvement of GABAA receptors in 5-HT1A and σ1 receptor synergism on prefrontal dopaminergic transmission under circulating neurosteroid deficiency. Psychopharmacology (Berl) 2016;233:3125–3134. doi: 10.1007/s00213-016-4353-3. PubMed DOI
Dupre KB, Eskow KL, Steiniger A, Klioueva A, Negron GE, Lormand L, Park JY, Bishop C. Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on L-DOPA-induced dyskinesia and rotational behaviors in the hemi-parkinsonian rat. Psychopharmacology (Berl) 2008;199:99–108. doi: 10.1007/s00213-008-1135-6. PubMed DOI
Mason JP, Dring LG, Caldwell J. Pharmacokinetics of the 5-hydroxytryptamine1A agonist 8-hydroxy-2-(N,N-di-n-propylamino)tetralin (8-OHDPAT) in the rat after intravenous and oral administration. Xenobiotica. 1995;25:1371–1380. doi: 10.3109/00498259509061924. PubMed DOI
Jayamohanan H, Kumar MKM, Aneesh TP. 5-HIAA as a Potential Biological Marker for Neurological and Psychiatric Disorders. Adv Pharm Bull. 2019;9:374. doi: 10.15171/apb.2019.044. PubMed DOI PMC
Uban KA, Rummel J, Floresco SB, Galea LAM. Estradiol Modulates Effort-Based Decision Making in Female Rats. Neuropsychopharmacology. 2012;37:390. doi: 10.1038/npp.2011.176. PubMed DOI PMC