Strong increase of photosynthetic pigments and leaf size in a pruned Ginkgo biloba tree
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651366
PubMed Central
PMC11558581
DOI
10.32615/ps.2023.020
PII: PS61297
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll a/b ratio, chlorophyll levels, leaf size, leaf thickness, ratio of chlorophylls to carotenoids, total carotenoid content,
- Publikační typ
- časopisecké články MeSH
A 50-year-old solitary, sun-exposed ginkgo tree had strongly been pruned in the fall of 2021. Very few buds for the formation of new leaves, twigs, and branches were left over. In spring 2022, these few remaining buds responded with the formation of a different leaf type. These leaves were 2.7 times larger and also thicker than in the years before. In addition, the mean content of total chlorophylls [Chl (a+b)] per leaf area unit of dark-green leaves was 1.45, those of green leaves two times higher as compared to the years before pruning and the two other ginkgo trees which had been investigated in parallel. A comparable increase was also found for the level of total carotenoids (x+c). The mean content for Chl (a+b) were 1,118 mg m-2 for dark-green and 898 mg m-2 for green leaves as compared to 435 to 770 mg m-2 in leaves of other trees. The higher values for Chl (a+b) and total carotenoid content showed up also on a fresh and dry mass basis. Thus, with the formation of a new, larger leaf type by changes in morphology (leaf size and thickness) and the increase of photosynthetic pigments, the pruned ginkgo tree was able to compensate for the much lower number of leaves and photosynthetic units.
Zobrazit více v PubMed
Cao M., Gan Q., Xu Y. et al.: Pruning improves seedling development and bioactive secondary metabolite accumulation in the leaves of Ginkgo biloba. – Trees 36: 953-966, 2022. 10.1007/s00468-021-02260-2 DOI
Eschrich W., Burchardt R., Essiamah S.: The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies. – Trees 3: 1-10, 1989. 10.1007/BF00202394 DOI
Fujii K.: [Observation on the morphology of the pollen tube and the spermatozoid of Ginkgo biloba.] – Botan. Mag. Tokyo 13: 28-30, 1899. [In Japanese]
González-Rodríguez A.M., Peters J.: Strategies of leaf expansion in Ficus carica under semiarid conditions. – Plant Biol. 12: 469-474, 2010. 10.1111/j.1438-8677.2009.00220.x PubMed DOI
Grochowska M.J., Karaszewska A., Jankowska B. et al.: Dormant pruning influence on auxin, gibberellin and cytokinin levels in apple trees. – J. Am. Soc. Hortic. Sci. 109: 312-318, 1984. 10.21273/JASHS.109.3.312 DOI
Hansen H.C.: Der Einfluß des Lichtes auf die Bildung von Licht- und Schattenblättern der Buche, Fagus sylvatica. [The influence of light on the formation of light and shade leaves of beech, Fagus sylvatica.] – Physiol. Plantarum 12: 545-550, 1959. [In German] https://www.deepdyve.com/lp/wiley/der-einfluss-des-li-chtes-auf-die-bilduug-vou-licht-und-schattenbl-tg05RvHlKS
Idris A., Linatoc A.C., Abu Bakar M.F.B.: Effect of light intensity on the photosynthesis and stomatal density of selected plant species of Guning Ledang, Johor. – Malays. Appl. Biol. 48: 133-140, 2019. https://www.mabjournal.com/index.php?option=com_content&view=article&id=938:480315&catid=108:volume-483-june-2019
Kim Y.S., Lee J.K., Chung G.C.: Tolerance and susceptibility of Ginkgo to air pollution. – In: Hori T., Ridge R.W., Tulecke W. et al. (ed.): Ginkgo biloba – a Global Treasure. From Biology to Medicine. Pp. 233-242. Springer, Tokyo: 1997. 10.1007/978-4-431-68416-9_18 DOI
King R.W.: Implication of plant growth and the transport of regulatory compounds in phloem and xylem. – Proc. Symp. Canberra 36: 417-431, 1975.
Leigh A., Zwieniecki M.A., Rockwell F.E. et al.: Structural and hydraulic correlates of heterophylly in Ginkgo biloba. – New Phytol. 189: 459-470, 2011. 10.1111/j.1469-8137.2010.03476.x PubMed DOI
Letham D.S.: Cytokinins. – In: Letham D.S., Goodwin P.B., Higgins T.J.V. (ed.): Phytohormones and Related Compounds: A Comprehensive Treatise. Vol. 1. Pp. 205-263. Elsevier, Amsterdam: 1968.
Lichtenthaler H.K.: Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. – Method. Enzymol. 148: 350-382, 1987. 10.1016/0076-6879(87)48036-1 DOI
Lichtenthaler H.K.: Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone and isoprene in leaves under high photosynthetic irradiance. – Photosynth. Res. 92: 163-179, 2007. 10.1007/s11120-007-9204-y PubMed DOI
Lichtenthaler H.K., Babani F.: Light adaption and senescence of the photosynthetic apparatus: changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. – In: Papageorgiou G., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 713-736. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9_28 DOI
Lichtenthaler H.K., Babani F.: Contents of photosynthetic pigments and ratios of chlorophyll a/b and chlorophylls to carotenoids (a+b)/(x+c) in C4 plants as compared to C3 plants. – Photosynthetica 60: 3-9, 2022. 10.32615/ps.2021.041 DOI
Lichtenthaler H.K., Babani F., Navrátil M., Buschmann C.: Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. – Photosynth. Res. 117: 355-366, 2013. 10.1007/s11120-013-9834-1 PubMed DOI
Lichtenthaler H.K., Buschmann C.: Extraction of photosynthetic tissues: chlorophylls and carotenoids. – In: Current Protocols in Food Analytical Chemistry. Supplement 1. Unit F4.2.1-F4.2.6. John Wiley, New York: 2001a. 10.1002/0471142913.faf0402s01 DOI
Lichtenthaler H.K., Buschmann C.: Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy – In: Current Protocols in Food Analytical Chemistry Supplement 1. Unit F4.3.1-F 4.3.8. John Wiley, New York: 2001b. 10.1002/0471142913.faf0403s01 DOI
Lichtenthaler H.K., Buschmann C., Döll M. et al.: Photosynthetic activity, chloroplast ultrastructure and leaf characteristics of high-light and low-light plants and of sun and shade leaves. – Photosynth. Res. 2: 115-141, 1981. 10.1007/BF00028752 PubMed DOI
Mason M.G., Ross J.J., Babst B.A. et al.: Sugar demand, not auxin, is the initial regulator of apical dominance. – PNAS 111: 6092-6097, 2014. 10.1073/pnas.1322045111 PubMed DOI PMC
Mediene S., Jordan M.O., Pagès L. et al.: The influence of severe shoot pruning on growth, carbon and nitrogen status in young peach trees (Prunus persica). – Tree Physiol. 22: 1289-1296, 2002. 10.1093/treephys/22.18.1289 PubMed DOI
Nordhausen M.: Über Sonnen und Schattenblätter. [On sun and shade leaves.] – Ber. Deutsch. Bot. Ges. 21: 30-45, 1903. [In German] https://www.zobodat.at/pdf/Ber-Deutschen-Bot-Ges_21_0030-0045.pdf
Osborn J.M., Taylor T.N.: Morphological and ultrastructural studies on plant cuticular membranes. I. Sun and shade leaves of Quercus velutina (Fagaceae). – Bot. Gaz. 151: 465-476, 1990. 10.1086/337846 DOI
Salisbury E.J.: On the causes and ecological significance of differences of stomatal frequency with a special reference to woodland flora. – Philos. T. Roy. Soc. B 216: 1-65, 1928. 10.1098/rstb.1928.0001 DOI
Sarijeva G., Knapp M., Lichtenthaler H.K.: Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. – J. Plant Physiol. 164: 950-955, 2007. 10.1016/j.jplph.2006.09.002 PubMed DOI
Sharkey T.D., Wiberley A.E., Donohue R.A.: Isoprene emission from plants: why and how. – Ann. Bot.-London 101: 5-18, 2008. 10.1093/aob/mcm240 PubMed DOI PMC
Skene K.G.M.: Cytokinin production by roots as a factor in the control of plant growth and the transport of regulatory compounds in phloem and xylem. – In: Torrey J.G., Clarkson D. (ed.): The Development and Function of Roots. Pp. 365-395. Academic Press, New York: 1975.
Suchocka M., Swoczyna, Kosno-Jończy J., Kalaji H.M.: Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill. trees. – PLoS ONE 16: e0256465, 2021. 10.1371/journal.pone.0256465 PubMed DOI PMC
Tichá I.: Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. – Photosynthetica 16: 375-471, 1982. https://kramerius.lib.cas.cz/view/uuid:336188b3-4ce4-11e1-1651-001143e3f55c?page=uuid:33618a38-4ce4-11e1-1651-001143e3f55c
Yiotis C., Evans-FitzGerald C., McElvain J.C.: Differences in photosynthetic plasticity of ferns and Ginkgo grown in experimentally controlled low [O2]:[CO2] atmosphere may explain their contrasting ecological fate across the Triassic-Jurassic mass extinction boundary. – Ann. Bot.-London 119: 1385-1395, 2017. 10.1093/aob/mcx018 PubMed DOI PMC
Zeidler J.G., Lichtenthaler H.K.: Two simple methods for measuring isoprene emission of leaves by UV-spectroscopy and GC-MS. – Z. Naturforsch. C 53: 1087-1089, 1998. 10.1515/znc-1998-11-1223 DOI