Anticholinesterases Traits Inbuilt in Buxaceae Plant Extracts against Alzheimer's Disease
Jazyk angličtina Země Spojené arabské emiráty Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2208/2024-2025, CZ.10.03.01/00/22_003/0000048, FIM UHK 2203
UHK PrF Excellence Project
PubMed
40207817
PubMed Central
PMC12307989
DOI
10.2174/1570159x23666250326091016
PII: CN-EPUB-147375
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Buxaceae, acetylcholinesterase, butyrylcholinesterase., cholinesterase inhibitors, inhibition,
- MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- cholinesterasové inhibitory * terapeutické užití farmakologie izolace a purifikace MeSH
- lidé MeSH
- rostlinné extrakty * terapeutické užití chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cholinesterasové inhibitory * MeSH
- rostlinné extrakty * MeSH
This review provides a comprehensive account of advances in the field of cholinesterase inhibitors isolated from the Buxaceae family. Naturally occurring anticholinesterases derived from plants are considered to be a potential source of new drug candidates for treating Alzheimer's disease (AD). AD is now universally accepted as an irreversible, incurable, and progressive neurological disorder. Initiating with memory impairment, propagating with cognitive deficit, and ultimately leading to death is the general pathway of AD. Lower level of acetylcholine in the brain is characterized as one of the prominent reasons for AD. The cholinergic hypothesis states that elevated levels of acetylcholine in the brain can alleviate symptoms of AD. Steroidal and terpenoidal alkaloids isolated from plants of the Buxaceae family have been reviewed here for their anticholinesterase activity. Most of them have shown in vitro inhibition of horse serum butyrylcholinesterase (BuChE, EC 3.1.1.7) and electric eel acetylcholinesterase (AChE, EC 3.1.1.8). Although the general consensus has concluded that cholinesterase inhibitors may alleviate AD symptoms but cannot cure the disease, new drugs are still being sought to improve the quality of life of AD patients. Steroidal and terpenoidal anticholinesterase alkaloids can prove to be a promising group of AChE inhibitors.
Biomedical Research Centre University Hospital Hradec Kralove Hradec Kralove Czech Republic
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Pharmacy School of Pharmacy DY Patil University Navi Mumbai Maharashtra 400706 India
NBC Defence Institute University of Defence Vyskov Czech Republic
Ramrao Adik Institute of Technology DY Patil University Nerul Navi Mumbai India
School of Studies in Chemistry Pt Ravishankar Shukla University Raipur 492010 India
Zobrazit více v PubMed
Sharma S., Banjare M.K., Singh N., Korábečný J., Kuča K., Ghosh K.K. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer’s drugs. RSC Advances. 2020;10(64):38873–38883. doi: 10.1039/D0RA06323A. PubMed DOI PMC
Zhu Q., Zhang N., Hu N., Jiang R., Lu H., Xuan A., Long D., Chen Y. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer’s disease. Mol. Med. Rep. 2020;21(3):1172–1180. doi: 10.3892/mmr.2020.10918. PubMed DOI PMC
Marešová P., Mohelská H., Dolejš J., Kuča K. Socio-economic aspects of Alzheimer’s disease. Curr. Alzheimer Res. 2015;12(9):903–911. doi: 10.2174/156720501209151019111448. PubMed DOI
Sharma S., Banjare M.K., Singh N., Korábečný J., Fišar Z., Kuča K., Ghosh K.K. Exploring spectroscopic insights into molecular recognition of potential anti-Alzheimer’s drugs within the hydrophobic pockets of β-cycloamylose. J. Mol. Liq. 2020;311:113269. doi: 10.1016/j.molliq.2020.113269. DOI
Chen Z.R., Huang J.B., Yang S.L., Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27(6):1816. doi: 10.3390/molecules27061816. PubMed DOI PMC
Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Advancements and challenges on the path to treatments. Science. 2002;297:353–356. doi: 10.1126/science.1072994. PubMed DOI
Mohammad D., Chan P., Bradley J., Lanctôt K., Herrmann N. Acetylcholinesterase inhibitors for treating dementia symptoms - A safety evaluation. Expert Opin. Drug Saf. 2017;16(9):1009–1019. doi: 10.1080/14740338.2017.1351540. PubMed DOI
Sanabria-Castro A., Alvarado-Echeverría I., Monge-Bonilla C. Molecular pathogenesis of Alzheimer’s disease: An update. Ann. Neurosci. 2017;24(1):46–54. doi: 10.1159/000464422. PubMed DOI PMC
Taylor P. Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology. 1998;51(Suppl. 1):S30–S35. doi: 10.1212/WNL.51.1_Suppl_1.S30. PubMed DOI
Greig N., Sambamurti K., Yu Q., Brossi A., Bruinsma G., Lahiri D. An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Curr. Alzheimer Res. 2005;2(3):281–290. doi: 10.2174/1567205054367829. PubMed DOI
Darvesh S., Hopkins D.A., Geula C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003;4(2):131–138. doi: 10.1038/nrn1035. PubMed DOI
Spilovska K., Korabecny J., Kral J., Horova A., Musilek K., Soukup O., Drtinova L., Gazova Z., Siposova K., Kuca K. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment-synthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18(2):2397–2418. doi: 10.3390/molecules18022397. PubMed DOI PMC
Jeřábek J., Uliassi E., Guidotti L., Korábečný J., Soukup O., Sepsova V., Hrabinova M., Kuča K., Bartolini M., Peña-Altamira L.E., Petralla S., Monti B., Roberti M., Bolognesi M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem. 2017;127:250–262. doi: 10.1016/j.ejmech.2016.12.048. PubMed DOI
Pinho B.R., Ferreres F., Valentão P., Andrade P.B. Nature as a source of metabolites with cholinesterase-inhibitory activity: An approach to Alzheimer’s disease treatment. J. Pharm. Pharmacol. 2013;65(12):1681–1700. doi: 10.1111/jphp.12081. PubMed DOI
Shah A.A., Dar T.A., Dar P.A., Ganie S.A., Kamal M.A. A current perspective on the inhibition of cholinesterase by natural and synthetic inhibitors. Curr. Drug Metab. 2017;18(2):96–111. doi: 10.2174/1389200218666161123122734. PubMed DOI
Klimova B., Kuca K. Alzheimer’s disease and Chinese medicine as a useful alternative intervention tool: A mini-review. Curr. Alzheimer Res. 2017;14(6):680–685. doi: 10.2174/1567205014666170117103656. PubMed DOI
Houghton P.J., Ren Y., Howes M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006;23(2):181–199. doi: 10.1039/b508966m. PubMed DOI
Mukherjee P.K., Kumar V., Mal M., Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14(4):289–300. doi: 10.1016/j.phymed.2007.02.002. PubMed DOI
Orhan G., Orhan I., Subutay-Oztekin N., Ak F., Sener B. Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer’s disease. Recent Patents CNS Drug Discov. 2009;4(1):43–51. doi: 10.2174/157488909787002582. PubMed DOI
Williams P., Sorribas A., Howes M.J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 2011;28(1):48–77. doi: 10.1039/C0NP00027B. PubMed DOI PMC
Patočka J. Natural cholinesterase inhibitors from mushrooms. Vojen. Zdrav. Listy. 2012;81(1):40–44. doi: 10.31482/mmsl.2012.005. DOI
Ahmed F., Ghalib R., Sasikala P., Mueen Ahmed K.K. Cholinesterase inhibitors from botanicals. Pharmacogn. Rev. 2013;7(14):121–130. doi: 10.4103/0973-7847.120511. PubMed DOI PMC
Khan S.A., Khan S.B., Shah Z., Asiri A.M. Withanolides: Biologically active constituents in the treatment of Alzheimer’s disease. Med. Chem. 2016;12(3):238–256. doi: 10.2174/1573406411666151030112314. PubMed DOI
Kaufmann D., Kaur Dogra A., Tahrani A., Herrmann F., Wink M. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target. Molecules. 2016;21(9):1161. doi: 10.3390/molecules21091161. PubMed DOI PMC
Wang Z.Y., Liu J.G., Li H., Yang H.M. Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: A review. Am. J. Chin. Med. 2016;44(8):1525–1541. doi: 10.1142/S0192415X16500853. PubMed DOI
von Balthazar M., Endress P.K., Qiu Y.L. Phylogenetic relationships in Buxaceae based on nuclear internal transcribed spacers and plastid ndhF sequences. Int. J. Plant Sci. 2000;161(5):785–792. doi: 10.1086/314302. DOI
Stafford G.I., Pedersen M.E., van Staden J., Jäger A.K. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J. Ethnopharmacol. 2008;119(3):513–537. doi: 10.1016/j.jep.2008.08.010. PubMed DOI
Natarajan S., Shunmugiah K.P., Kasi P.D. Plants traditionally used in age-related brain disorders (dementia): An ethanopharmacological survey. Pharm. Biol. 2013;51(4):492–523. doi: 10.3109/13880209.2012.738423. PubMed DOI
Choudhary M.I., Atta-ur-Rahman, Freyer A.J., Shamma M. Five new steroidal alkaloids from Buxus papilosa. Some relationships between structures and specific rotations. Tetrahedron. 1986;42(20):5747–5752. doi: 10.1016/S0040-4020(01)88180-1. DOI
Babar Z.U., Ata A., Meshkatalsadat M.H. New bioactive steroidal alkaloids from Buxus hyrcana. Steroids. 2006;71(13-14):1045–1051. doi: 10.1016/j.steroids.2006.09.002. PubMed DOI
Khalid A., Azim M.K., Parveen S., Atta-ur-Rahman, Choudhary M.I. Structural basis of acetylcholinesterase inhibition by Triterpenoidal alkaloids. Biochem. Biophys. Res. Commun. 2005;331(4):1528–1532. doi: 10.1016/j.bbrc.2005.03.248. PubMed DOI
Atta-ur-Rahman, Ahmed D., Erfan A.S., Jamal A., Choudhary M.I., Sener B., Turkoz S. Steroidal alkaloids from leaves of Buxus sempervirens. Phytochemistry. 1991;30(4):1295–1298. doi: 10.1016/S0031-9422(00)95219-1. DOI
Atta-ur-Rahman A., Ata A., Naz S., Choudhary M.I., Sener B., Turkoz S. New steroidal alkaloids from the roots of Buxus sempervirens. J. Nat. Prod. 1999;62(5):665–669. doi: 10.1021/np980285h. PubMed DOI
Heywood V.H., Brummitt R.K., Culham A., Seberg O. Flowering Plant Families of The World. Ontario: Firefly Books; 2007. p. 88.
The Families and Genera of Vascular Plants. Berlin: Springer; 1990. Kubitzki, K., Ed.; p. 1.
Christenhusz M.J.M., Byng J.W. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201–217. doi: 10.11646/phytotaxa.261.3.1. DOI
Byng J.W. The Flowering Plants Handbook: A Practical Guide to Families and Genera of the World. Plant Gateway Ltd.; 2014.
An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016;181(1):1–20. doi: 10.1111/boj.12385. DOI
Choudhary M.I., Shahnaz S., Parveen S., Khalid A., Majeed Ayatollahi S.A., Atta-ur-Rahman, Parvez M. New triterpenoid alkaloid cholinesterase inhibitors from Buxus hyrcana. J. Nat. Prod. 2003;66(6):739–742. doi: 10.1021/np020446o. PubMed DOI
Lev E. Practical Materia Medica of the Medieval Eastern Mediterranean According to the Cairo Genizah. Leiden, The Netherlands: Brill; 2007.
Khan A., Ali S., Gilani A.H., Ahmed M., Choudhary M.I. Antispasmodic, bronchodilator, vasorelaxant and cardiosuppressant effects of Buxus papillosa. BMC Complement. Altern. Med. 2017;17(1):54. doi: 10.1186/s12906-017-1558-x. PubMed DOI PMC
Palmer E., Pitman N. Trees of Southern Africa. Cape Town: A.A. Balkema Publishers; 1972.
Lam C.W., Wakeman A., James A., Ata A., Gengan R.M., Ross S.A. Bioactive steroidal alkaloids from Buxus macowanii Oliv. Steroids. 2015;95:73–79. doi: 10.1016/j.steroids.2014.12.002. PubMed DOI
Matochko W.L., James A., Lam C.W., Kozera D.J., Ata A., Gengan R.M. Triterpenoidal alkaloids from Buxus natalensis and their acetylcholinesterase inhibitory activity. J. Nat. Prod. 2010;73(11):1858–1862. doi: 10.1021/np100494u. PubMed DOI
Yan Y.X., Hu X.D., Chen J.C., Sun Y., Zhang X.M., Qing C., Qiu M.H. Cytotoxic triterpenoid alkaloids from Buxus microphylla. J. Nat. Prod. 2009;72(2):308–311. doi: 10.1021/np800719h. PubMed DOI
Bai S.T., Zhu G.L., Peng X.R., Dong J.R., Yu M.Y., Chen J.C., Wan L.S., Qiu M.H. Cytotoxicity of triterpenoid alkaloids from Buxus microphylla against human tumor cell lines. Molecules. 2016;21(9):1125. doi: 10.3390/molecules21091125. PubMed DOI PMC
Lázaro A., Traveset A. Reproductive success of the endangered shrub Buxus balearica Lam. (Buxaceae): Pollen limitation, and inbreeding and outbreeding depression. Plant Syst. Evol. 2006;261(1-4):117–128. doi: 10.1007/s00606-005-0404-7. DOI
Matin A., Muhammed A., Ashraf M., Qureshi R.A. Traditional use of herbs, shrubs and trees of Shogran valley, Mansehra, Pakistan. Pak. J. Biol. Sci. 2001;4(9):1101–1107. doi: 10.3923/pjbs.2001.1101.1107. DOI
Ahmad B., Azam S., Bashir S. Biological screening of the aerial parts of the Sarcococca saligna. J. Med. Plants Res. 2010;4(22):2404–2410.
Hara H., Stearn W.T., Williams L.H.J. A Joint project of British Museum (Nepal History) and the University of Tokyo. Trustees of British Museum; London: 1978. An enumeration of the flowering plants of Nepal.
Kalauni S.K., Choudhary M.I., Khalid A., Manandhar M.D., Shaheen F., Atta-ur-Rahman, Gewali M.B. New cholinesterase inhibiting steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin. Chem. Pharm. Bull. 2002;50(11):1423–1426. doi: 10.1248/cpb.50.1423. PubMed DOI
Devkota K.P., Lenta B.N., Choudhary M.I., Naz Q., Fekam F.B., Rosenthal P.J., Sewald N. Cholinesterase inhibiting and antiplasmodial steroidal alkaloids from Sarcococca hookeriana. Chem. Pharm. Bull. 2007;55(9):1397–1401. doi: 10.1248/cpb.55.1397. PubMed DOI
He K., Du J. Two new steroidal alkaloids from the roots of Sarcococca ruscifolia. J. Asian Nat. Prod. Res. 2010;12(3):233–238. doi: 10.1080/10286021003610136. PubMed DOI
Zhang P., Shao L., Shi Z., Zhang Y., Du J., Cheng K., Yu P. Pregnane alkaloids from Sarcococca ruscifolia and their cytotoxic activity. Phytochem. Lett. 2015;14:31–34. doi: 10.1016/j.phytol.2015.08.010. DOI
Zhong-Mei Z., Li-Jun L., Mo Y., Shi-Shan Y., Pu-Zhu C., De-Quan Y. Steroidal alkaloids from roots of Sarcococca vagans. Phytochemistry. 1997;46(6):1091–1093. doi: 10.1016/S0031-9422(97)00385-3. DOI
Funayama S., Noshita T., Shinoda K., Haga N., Nozoe S., Hayashi M., Komiyama K. Cytotoxic alkaloids of Pachysandra terminalis. Biol. Pharm. Bull. 2000;23(2):262–264. doi: 10.1248/bpb.23.262. PubMed DOI
Zhai H.Y., Zhao C., Zhang N., Jin M.N., Tang S.A., Qin N., Kong D.X., Duan H.Q. Alkaloids from Pachysandra terminalis inhibit breast cancer invasion and have potential for development as antimetastasis therapeutic agents. J. Nat. Prod. 2012;75(7):1305–1311. doi: 10.1021/np300207c. PubMed DOI
Lin D., Xiao M., Zhao J., Li Z., Xing B., Li X., Kong M., Li L., Zhang Q., Liu Y., Chen H., Qin W., Wu H., Chen S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21(10):1374. doi: 10.3390/molecules21101374. PubMed DOI PMC
Chang L.C., Bhat K.P.L., Pisha E., Kennelly E.J., Fong H.H.S., Pezzuto J.M., Kinghorn A.D. Activity-guided isolation of steroidal alkaloid antiestrogen-binding site inhibitors from Pachysandra procumbens. J. Nat. Prod. 1998;61(10):1257–1262. doi: 10.1021/np980162x. PubMed DOI
Jiao Z., Li J. Phylogenetics and biogeography of eastern Asian–North American disjunct genus Pachysandra (Buxaceae) inferred from nucleotide sequences. J. Syst. Evol. 2009;47(3):191–201. doi: 10.1111/j.1759-6831.2009.00021.x. DOI
Sun Y., Yan Y.X., Chen J.C., Lu L., Zhang X.M., Li Y., Qiu M.H. Pregnane alkaloids from Pachysandra axillaris. Steroids. 2010;75(12):818–824. doi: 10.1016/j.steroids.2010.05.005. PubMed DOI
Atta-ur-Rahman, Feroz F., Naeem I., Zaheer-ul-Haq, Nawaz S.A., Khan N., Khan M.R., Choudhary M.I. New pregnane-type steroidal alkaloids from Sarcococca saligna and their cholinesterase inhibitory activity. Steroids. 2004;69(11-12):735–741. doi: 10.1016/j.steroids.2004.03.016. PubMed DOI
Atta-ur-Rahman, Zaheer-ul-Haq, Khalid A., Anjum S., Khan M.R., Choudhary M.I. Pregnane-type steroidal alkaloids of Sarcococca saligna: A new class of cholinesterase inhibitors. Helv. Chim. Acta. 2002;85(2):678–688. doi: 10.1002/1522-2675(200202)85:2<678::AID-HLCA678>3.0.CO;2-2. DOI
Khalid A., Zaheer-ul-Haq, Anjum S., Riaz Khan M., Atta-ur-Rahman, Iqbal Choudhary M. Kinetics and structure-activity relationship studies on pregnane-type steroidal alkaloids that inhibit cholinesterases. Bioorg. Med. Chem. 2004;12(9):1995–2003. doi: 10.1016/j.bmc.2004.03.002. PubMed DOI
Vorbrueggen H., Pakrashi S.C., Djerassi C. Terpenoids. LIV. Studies on Indian medicinal plants. Arborinol, a newtriterpene type. Justus Liebigs Ann. Chem. 1963;668:57–76.
Mokrý P., Votický Z. Buxus alkaloids. XX. Alkaloids of Buxus arborescens Mill. Chem. Pap. 1984;38(1):101–109.
Vassova A., Votický Z., Černík J., Tomko J. Buxus alkaloids. XVIII. Alkaloids of Buxus harlandi Hance. Chem. Pap. 1980;34(5):706–711.
Ata A., Iverson C.D., Kalhari K.S., Akhter S., Betteridge J., Meshkatalsadat M.H., Orhan I., Sener B. Triterpenoidal alkaloids from Buxus hyrcana and their enzyme inhibitory, anti-fungal and anti-leishmanial activities. Phytochemistry. 2010;71(14-15):1780–1786. doi: 10.1016/j.phytochem.2010.06.017. PubMed DOI
Guo H., Cai X.H. Triterpenoid alkaloids from Buxus rugulosa. Chem. Nat. Compd. 2008;44(2):206–207. doi: 10.1007/s10600-008-9015-1. DOI
Choudhary M.I., Shahnaz S., Parveen S., Khalid A., Mesaik M.A., Ayatollahi S.A.M., Atta-ur-Rahman New cholinesterase-inhibiting triterpenoid alkaloids from Buxus hyrcana. Chem. Biodivers. 2006;3(9):1039–1052. doi: 10.1002/cbdv.200690102. PubMed DOI
Loru F., Duval D., Aumelas A., Akeb F., Guédon D., Guedj R. Four steroidal alkaloids from the leaves of Buxus sempervirens. Phytochemistry. 2000;54(8):951–957. doi: 10.1016/S0031-9422(00)00036-4. PubMed DOI
Rahman A., Nisa M., Farhi S. The isolation and structure of “Moenjodaramine” and “Harappamine” — Two new alkaloids from Buxus papilosa. Z. Naturforsch. B. J. Chem. Sci. 1984;39(4):524–527. doi: 10.1515/znb-1984-0418. DOI
Atta-ur-Rahman, Alam M., Nasir H., Dagne E., Yenesew A. Three steroidal alkaloids from Buxus hildebrandtii. Phytochemistry. 1990;29(4):1293–1296. doi: 10.1016/0031-9422(90)85445-L. DOI
Fourneau C., Hocquemiller R., Guédon D., Cavé A. Spirofornabuxine, a novel type of Buxus alkaloid. Tetrahedron Lett. 1997;38(17):2965–2968. doi: 10.1016/S0040-4039(97)00534-0. DOI
Atta-ur-Rahman, Parveen S., Khalid A., Farooq A., Choudhary M.I. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry. 2001;58(6):963–968. doi: 10.1016/S0031-9422(01)00332-6. PubMed DOI
Atta-ur-Rahman, Choudhary M.I. Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure Appl. Chem. 2001;73(3):555–560. doi: 10.1351/pac200173030555. DOI
Khalid A., Zaheer-ul-Haq, Ghayur M.N., Feroz F., Atta-ur-Rahman, Gilani A.H., Choudhary M.I. Cholinesterase inhibitory and spasmolytic potential of steroidal alkaloids. J. Steroid Biochem. Mol. Biol. 2004;92(5):477–484. doi: 10.1016/j.jsbmb.2004.08.003. PubMed DOI
Atta-ur-Rahman, Feroz F., Zaheer-ul-Haq, Nawaz S.A., Khan M.R., Choudhary M.I. New steroidal alkaloids from Sarcococca saligna. Nat. Prod. Res. 2003;17(4):235–241. doi: 10.1080/1057563021000051086. PubMed DOI
Atta-ur-Rahman, Shazia A., Afgan F., M R.K., M I.C. Two new pregnane-type steroidal alkaloids from Sarcococca saligna. Phytochemistry. 1997;46(4):771–775. doi: 10.1016/S0031-9422(97)00347-6. PubMed DOI