Anticholinesterases Traits Inbuilt in Buxaceae Plant Extracts against Alzheimer's Disease

. 2025 ; 23 (10) : 1137-1155.

Jazyk angličtina Země Spojené arabské emiráty Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40207817

Grantová podpora
2208/2024-2025, CZ.10.03.01/00/22_003/0000048, FIM UHK 2203 UHK PrF Excellence Project

This review provides a comprehensive account of advances in the field of cholinesterase inhibitors isolated from the Buxaceae family. Naturally occurring anticholinesterases derived from plants are considered to be a potential source of new drug candidates for treating Alzheimer's disease (AD). AD is now universally accepted as an irreversible, incurable, and progressive neurological disorder. Initiating with memory impairment, propagating with cognitive deficit, and ultimately leading to death is the general pathway of AD. Lower level of acetylcholine in the brain is characterized as one of the prominent reasons for AD. The cholinergic hypothesis states that elevated levels of acetylcholine in the brain can alleviate symptoms of AD. Steroidal and terpenoidal alkaloids isolated from plants of the Buxaceae family have been reviewed here for their anticholinesterase activity. Most of them have shown in vitro inhibition of horse serum butyrylcholinesterase (BuChE, EC 3.1.1.7) and electric eel acetylcholinesterase (AChE, EC 3.1.1.8). Although the general consensus has concluded that cholinesterase inhibitors may alleviate AD symptoms but cannot cure the disease, new drugs are still being sought to improve the quality of life of AD patients. Steroidal and terpenoidal anticholinesterase alkaloids can prove to be a promising group of AChE inhibitors.

Zobrazit více v PubMed

Sharma S., Banjare M.K., Singh N., Korábečný J., Kuča K., Ghosh K.K. Multi-spectroscopic monitoring of molecular interactions between an amino acid-functionalized ionic liquid and potential anti-Alzheimer’s drugs. RSC Advances. 2020;10(64):38873–38883. doi: 10.1039/D0RA06323A. PubMed DOI PMC

Zhu Q., Zhang N., Hu N., Jiang R., Lu H., Xuan A., Long D., Chen Y. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer’s disease. Mol. Med. Rep. 2020;21(3):1172–1180. doi: 10.3892/mmr.2020.10918. PubMed DOI PMC

Marešová P., Mohelská H., Dolejš J., Kuča K. Socio-economic aspects of Alzheimer’s disease. Curr. Alzheimer Res. 2015;12(9):903–911. doi: 10.2174/156720501209151019111448. PubMed DOI

Sharma S., Banjare M.K., Singh N., Korábečný J., Fišar Z., Kuča K., Ghosh K.K. Exploring spectroscopic insights into molecular recognition of potential anti-Alzheimer’s drugs within the hydrophobic pockets of β-cycloamylose. J. Mol. Liq. 2020;311:113269. doi: 10.1016/j.molliq.2020.113269. DOI

Chen Z.R., Huang J.B., Yang S.L., Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27(6):1816. doi: 10.3390/molecules27061816. PubMed DOI PMC

Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Advancements and challenges on the path to treatments. Science. 2002;297:353–356. doi: 10.1126/science.1072994. PubMed DOI

Mohammad D., Chan P., Bradley J., Lanctôt K., Herrmann N. Acetylcholinesterase inhibitors for treating dementia symptoms - A safety evaluation. Expert Opin. Drug Saf. 2017;16(9):1009–1019. doi: 10.1080/14740338.2017.1351540. PubMed DOI

Sanabria-Castro A., Alvarado-Echeverría I., Monge-Bonilla C. Molecular pathogenesis of Alzheimer’s disease: An update. Ann. Neurosci. 2017;24(1):46–54. doi: 10.1159/000464422. PubMed DOI PMC

Taylor P. Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology. 1998;51(Suppl. 1):S30–S35. doi: 10.1212/WNL.51.1_Suppl_1.S30. PubMed DOI

Greig N., Sambamurti K., Yu Q., Brossi A., Bruinsma G., Lahiri D. An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Curr. Alzheimer Res. 2005;2(3):281–290. doi: 10.2174/1567205054367829. PubMed DOI

Darvesh S., Hopkins D.A., Geula C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 2003;4(2):131–138. doi: 10.1038/nrn1035. PubMed DOI

Spilovska K., Korabecny J., Kral J., Horova A., Musilek K., Soukup O., Drtinova L., Gazova Z., Siposova K., Kuca K. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment-synthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18(2):2397–2418. doi: 10.3390/molecules18022397. PubMed DOI PMC

Jeřábek J., Uliassi E., Guidotti L., Korábečný J., Soukup O., Sepsova V., Hrabinova M., Kuča K., Bartolini M., Peña-Altamira L.E., Petralla S., Monti B., Roberti M., Bolognesi M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem. 2017;127:250–262. doi: 10.1016/j.ejmech.2016.12.048. PubMed DOI

Pinho B.R., Ferreres F., Valentão P., Andrade P.B. Nature as a source of metabolites with cholinesterase-inhibitory activity: An approach to Alzheimer’s disease treatment. J. Pharm. Pharmacol. 2013;65(12):1681–1700. doi: 10.1111/jphp.12081. PubMed DOI

Shah A.A., Dar T.A., Dar P.A., Ganie S.A., Kamal M.A. A current perspective on the inhibition of cholinesterase by natural and synthetic inhibitors. Curr. Drug Metab. 2017;18(2):96–111. doi: 10.2174/1389200218666161123122734. PubMed DOI

Klimova B., Kuca K. Alzheimer’s disease and Chinese medicine as a useful alternative intervention tool: A mini-review. Curr. Alzheimer Res. 2017;14(6):680–685. doi: 10.2174/1567205014666170117103656. PubMed DOI

Houghton P.J., Ren Y., Howes M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006;23(2):181–199. doi: 10.1039/b508966m. PubMed DOI

Mukherjee P.K., Kumar V., Mal M., Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14(4):289–300. doi: 10.1016/j.phymed.2007.02.002. PubMed DOI

Orhan G., Orhan I., Subutay-Oztekin N., Ak F., Sener B. Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer’s disease. Recent Patents CNS Drug Discov. 2009;4(1):43–51. doi: 10.2174/157488909787002582. PubMed DOI

Williams P., Sorribas A., Howes M.J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 2011;28(1):48–77. doi: 10.1039/C0NP00027B. PubMed DOI PMC

Patočka J. Natural cholinesterase inhibitors from mushrooms. Vojen. Zdrav. Listy. 2012;81(1):40–44. doi: 10.31482/mmsl.2012.005. DOI

Ahmed F., Ghalib R., Sasikala P., Mueen Ahmed K.K. Cholinesterase inhibitors from botanicals. Pharmacogn. Rev. 2013;7(14):121–130. doi: 10.4103/0973-7847.120511. PubMed DOI PMC

Khan S.A., Khan S.B., Shah Z., Asiri A.M. Withanolides: Biologically active constituents in the treatment of Alzheimer’s disease. Med. Chem. 2016;12(3):238–256. doi: 10.2174/1573406411666151030112314. PubMed DOI

Kaufmann D., Kaur Dogra A., Tahrani A., Herrmann F., Wink M. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target. Molecules. 2016;21(9):1161. doi: 10.3390/molecules21091161. PubMed DOI PMC

Wang Z.Y., Liu J.G., Li H., Yang H.M. Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s disease: A review. Am. J. Chin. Med. 2016;44(8):1525–1541. doi: 10.1142/S0192415X16500853. PubMed DOI

von Balthazar M., Endress P.K., Qiu Y.L. Phylogenetic relationships in Buxaceae based on nuclear internal transcribed spacers and plastid ndhF sequences. Int. J. Plant Sci. 2000;161(5):785–792. doi: 10.1086/314302. DOI

Stafford G.I., Pedersen M.E., van Staden J., Jäger A.K. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. J. Ethnopharmacol. 2008;119(3):513–537. doi: 10.1016/j.jep.2008.08.010. PubMed DOI

Natarajan S., Shunmugiah K.P., Kasi P.D. Plants traditionally used in age-related brain disorders (dementia): An ethanopharmacological survey. Pharm. Biol. 2013;51(4):492–523. doi: 10.3109/13880209.2012.738423. PubMed DOI

Choudhary M.I., Atta-ur-Rahman, Freyer A.J., Shamma M. Five new steroidal alkaloids from Buxus papilosa. Some relationships between structures and specific rotations. Tetrahedron. 1986;42(20):5747–5752. doi: 10.1016/S0040-4020(01)88180-1. DOI

Babar Z.U., Ata A., Meshkatalsadat M.H. New bioactive steroidal alkaloids from Buxus hyrcana. Steroids. 2006;71(13-14):1045–1051. doi: 10.1016/j.steroids.2006.09.002. PubMed DOI

Khalid A., Azim M.K., Parveen S., Atta-ur-Rahman, Choudhary M.I. Structural basis of acetylcholinesterase inhibition by Triterpenoidal alkaloids. Biochem. Biophys. Res. Commun. 2005;331(4):1528–1532. doi: 10.1016/j.bbrc.2005.03.248. PubMed DOI

Atta-ur-Rahman, Ahmed D., Erfan A.S., Jamal A., Choudhary M.I., Sener B., Turkoz S. Steroidal alkaloids from leaves of Buxus sempervirens. Phytochemistry. 1991;30(4):1295–1298. doi: 10.1016/S0031-9422(00)95219-1. DOI

Atta-ur-Rahman A., Ata A., Naz S., Choudhary M.I., Sener B., Turkoz S. New steroidal alkaloids from the roots of Buxus sempervirens. J. Nat. Prod. 1999;62(5):665–669. doi: 10.1021/np980285h. PubMed DOI

Heywood V.H., Brummitt R.K., Culham A., Seberg O. Flowering Plant Families of The World. Ontario: Firefly Books; 2007. p. 88.

The Families and Genera of Vascular Plants. Berlin: Springer; 1990. Kubitzki, K., Ed.; p. 1.

Christenhusz M.J.M., Byng J.W. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261(3):201–217. doi: 10.11646/phytotaxa.261.3.1. DOI

Byng J.W. The Flowering Plants Handbook: A Practical Guide to Families and Genera of the World. Plant Gateway Ltd.; 2014.

An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016;181(1):1–20. doi: 10.1111/boj.12385. DOI

Choudhary M.I., Shahnaz S., Parveen S., Khalid A., Majeed Ayatollahi S.A., Atta-ur-Rahman, Parvez M. New triterpenoid alkaloid cholinesterase inhibitors from Buxus hyrcana. J. Nat. Prod. 2003;66(6):739–742. doi: 10.1021/np020446o. PubMed DOI

Lev E. Practical Materia Medica of the Medieval Eastern Mediterranean According to the Cairo Genizah. Leiden, The Netherlands: Brill; 2007.

Khan A., Ali S., Gilani A.H., Ahmed M., Choudhary M.I. Antispasmodic, bronchodilator, vasorelaxant and cardiosuppressant effects of Buxus papillosa. BMC Complement. Altern. Med. 2017;17(1):54. doi: 10.1186/s12906-017-1558-x. PubMed DOI PMC

Palmer E., Pitman N. Trees of Southern Africa. Cape Town: A.A. Balkema Publishers; 1972.

Lam C.W., Wakeman A., James A., Ata A., Gengan R.M., Ross S.A. Bioactive steroidal alkaloids from Buxus macowanii Oliv. Steroids. 2015;95:73–79. doi: 10.1016/j.steroids.2014.12.002. PubMed DOI

Matochko W.L., James A., Lam C.W., Kozera D.J., Ata A., Gengan R.M. Triterpenoidal alkaloids from Buxus natalensis and their acetylcholinesterase inhibitory activity. J. Nat. Prod. 2010;73(11):1858–1862. doi: 10.1021/np100494u. PubMed DOI

Yan Y.X., Hu X.D., Chen J.C., Sun Y., Zhang X.M., Qing C., Qiu M.H. Cytotoxic triterpenoid alkaloids from Buxus microphylla. J. Nat. Prod. 2009;72(2):308–311. doi: 10.1021/np800719h. PubMed DOI

Bai S.T., Zhu G.L., Peng X.R., Dong J.R., Yu M.Y., Chen J.C., Wan L.S., Qiu M.H. Cytotoxicity of triterpenoid alkaloids from Buxus microphylla against human tumor cell lines. Molecules. 2016;21(9):1125. doi: 10.3390/molecules21091125. PubMed DOI PMC

Lázaro A., Traveset A. Reproductive success of the endangered shrub Buxus balearica Lam. (Buxaceae): Pollen limitation, and inbreeding and outbreeding depression. Plant Syst. Evol. 2006;261(1-4):117–128. doi: 10.1007/s00606-005-0404-7. DOI

Matin A., Muhammed A., Ashraf M., Qureshi R.A. Traditional use of herbs, shrubs and trees of Shogran valley, Mansehra, Pakistan. Pak. J. Biol. Sci. 2001;4(9):1101–1107. doi: 10.3923/pjbs.2001.1101.1107. DOI

Ahmad B., Azam S., Bashir S. Biological screening of the aerial parts of the Sarcococca saligna. J. Med. Plants Res. 2010;4(22):2404–2410.

Hara H., Stearn W.T., Williams L.H.J. A Joint project of British Museum (Nepal History) and the University of Tokyo. Trustees of British Museum; London: 1978. An enumeration of the flowering plants of Nepal.

Kalauni S.K., Choudhary M.I., Khalid A., Manandhar M.D., Shaheen F., Atta-ur-Rahman, Gewali M.B. New cholinesterase inhibiting steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin. Chem. Pharm. Bull. 2002;50(11):1423–1426. doi: 10.1248/cpb.50.1423. PubMed DOI

Devkota K.P., Lenta B.N., Choudhary M.I., Naz Q., Fekam F.B., Rosenthal P.J., Sewald N. Cholinesterase inhibiting and antiplasmodial steroidal alkaloids from Sarcococca hookeriana. Chem. Pharm. Bull. 2007;55(9):1397–1401. doi: 10.1248/cpb.55.1397. PubMed DOI

He K., Du J. Two new steroidal alkaloids from the roots of Sarcococca ruscifolia. J. Asian Nat. Prod. Res. 2010;12(3):233–238. doi: 10.1080/10286021003610136. PubMed DOI

Zhang P., Shao L., Shi Z., Zhang Y., Du J., Cheng K., Yu P. Pregnane alkaloids from Sarcococca ruscifolia and their cytotoxic activity. Phytochem. Lett. 2015;14:31–34. doi: 10.1016/j.phytol.2015.08.010. DOI

Zhong-Mei Z., Li-Jun L., Mo Y., Shi-Shan Y., Pu-Zhu C., De-Quan Y. Steroidal alkaloids from roots of Sarcococca vagans. Phytochemistry. 1997;46(6):1091–1093. doi: 10.1016/S0031-9422(97)00385-3. DOI

Funayama S., Noshita T., Shinoda K., Haga N., Nozoe S., Hayashi M., Komiyama K. Cytotoxic alkaloids of Pachysandra terminalis. Biol. Pharm. Bull. 2000;23(2):262–264. doi: 10.1248/bpb.23.262. PubMed DOI

Zhai H.Y., Zhao C., Zhang N., Jin M.N., Tang S.A., Qin N., Kong D.X., Duan H.Q. Alkaloids from Pachysandra terminalis inhibit breast cancer invasion and have potential for development as antimetastasis therapeutic agents. J. Nat. Prod. 2012;75(7):1305–1311. doi: 10.1021/np300207c. PubMed DOI

Lin D., Xiao M., Zhao J., Li Z., Xing B., Li X., Kong M., Li L., Zhang Q., Liu Y., Chen H., Qin W., Wu H., Chen S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21(10):1374. doi: 10.3390/molecules21101374. PubMed DOI PMC

Chang L.C., Bhat K.P.L., Pisha E., Kennelly E.J., Fong H.H.S., Pezzuto J.M., Kinghorn A.D. Activity-guided isolation of steroidal alkaloid antiestrogen-binding site inhibitors from Pachysandra procumbens. J. Nat. Prod. 1998;61(10):1257–1262. doi: 10.1021/np980162x. PubMed DOI

Jiao Z., Li J. Phylogenetics and biogeography of eastern Asian–North American disjunct genus Pachysandra (Buxaceae) inferred from nucleotide sequences. J. Syst. Evol. 2009;47(3):191–201. doi: 10.1111/j.1759-6831.2009.00021.x. DOI

Sun Y., Yan Y.X., Chen J.C., Lu L., Zhang X.M., Li Y., Qiu M.H. Pregnane alkaloids from Pachysandra axillaris. Steroids. 2010;75(12):818–824. doi: 10.1016/j.steroids.2010.05.005. PubMed DOI

Atta-ur-Rahman, Feroz F., Naeem I., Zaheer-ul-Haq, Nawaz S.A., Khan N., Khan M.R., Choudhary M.I. New pregnane-type steroidal alkaloids from Sarcococca saligna and their cholinesterase inhibitory activity. Steroids. 2004;69(11-12):735–741. doi: 10.1016/j.steroids.2004.03.016. PubMed DOI

Atta-ur-Rahman, Zaheer-ul-Haq, Khalid A., Anjum S., Khan M.R., Choudhary M.I. Pregnane-type steroidal alkaloids of Sarcococca saligna: A new class of cholinesterase inhibitors. Helv. Chim. Acta. 2002;85(2):678–688. doi: 10.1002/1522-2675(200202)85:2<678::AID-HLCA678>3.0.CO;2-2. DOI

Khalid A., Zaheer-ul-Haq, Anjum S., Riaz Khan M., Atta-ur-Rahman, Iqbal Choudhary M. Kinetics and structure-activity relationship studies on pregnane-type steroidal alkaloids that inhibit cholinesterases. Bioorg. Med. Chem. 2004;12(9):1995–2003. doi: 10.1016/j.bmc.2004.03.002. PubMed DOI

Vorbrueggen H., Pakrashi S.C., Djerassi C. Terpenoids. LIV. Studies on Indian medicinal plants. Arborinol, a newtriterpene type. Justus Liebigs Ann. Chem. 1963;668:57–76.

Mokrý P., Votický Z. Buxus alkaloids. XX. Alkaloids of Buxus arborescens Mill. Chem. Pap. 1984;38(1):101–109.

Vassova A., Votický Z., Černík J., Tomko J. Buxus alkaloids. XVIII. Alkaloids of Buxus harlandi Hance. Chem. Pap. 1980;34(5):706–711.

Ata A., Iverson C.D., Kalhari K.S., Akhter S., Betteridge J., Meshkatalsadat M.H., Orhan I., Sener B. Triterpenoidal alkaloids from Buxus hyrcana and their enzyme inhibitory, anti-fungal and anti-leishmanial activities. Phytochemistry. 2010;71(14-15):1780–1786. doi: 10.1016/j.phytochem.2010.06.017. PubMed DOI

Guo H., Cai X.H. Triterpenoid alkaloids from Buxus rugulosa. Chem. Nat. Compd. 2008;44(2):206–207. doi: 10.1007/s10600-008-9015-1. DOI

Choudhary M.I., Shahnaz S., Parveen S., Khalid A., Mesaik M.A., Ayatollahi S.A.M., Atta-ur-Rahman New cholinesterase-inhibiting triterpenoid alkaloids from Buxus hyrcana. Chem. Biodivers. 2006;3(9):1039–1052. doi: 10.1002/cbdv.200690102. PubMed DOI

Loru F., Duval D., Aumelas A., Akeb F., Guédon D., Guedj R. Four steroidal alkaloids from the leaves of Buxus sempervirens. Phytochemistry. 2000;54(8):951–957. doi: 10.1016/S0031-9422(00)00036-4. PubMed DOI

Rahman A., Nisa M., Farhi S. The isolation and structure of “Moenjodaramine” and “Harappamine” — Two new alkaloids from Buxus papilosa. Z. Naturforsch. B. J. Chem. Sci. 1984;39(4):524–527. doi: 10.1515/znb-1984-0418. DOI

Atta-ur-Rahman, Alam M., Nasir H., Dagne E., Yenesew A. Three steroidal alkaloids from Buxus hildebrandtii. Phytochemistry. 1990;29(4):1293–1296. doi: 10.1016/0031-9422(90)85445-L. DOI

Fourneau C., Hocquemiller R., Guédon D., Cavé A. Spirofornabuxine, a novel type of Buxus alkaloid. Tetrahedron Lett. 1997;38(17):2965–2968. doi: 10.1016/S0040-4039(97)00534-0. DOI

Atta-ur-Rahman, Parveen S., Khalid A., Farooq A., Choudhary M.I. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry. 2001;58(6):963–968. doi: 10.1016/S0031-9422(01)00332-6. PubMed DOI

Atta-ur-Rahman, Choudhary M.I. Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure Appl. Chem. 2001;73(3):555–560. doi: 10.1351/pac200173030555. DOI

Khalid A., Zaheer-ul-Haq, Ghayur M.N., Feroz F., Atta-ur-Rahman, Gilani A.H., Choudhary M.I. Cholinesterase inhibitory and spasmolytic potential of steroidal alkaloids. J. Steroid Biochem. Mol. Biol. 2004;92(5):477–484. doi: 10.1016/j.jsbmb.2004.08.003. PubMed DOI

Atta-ur-Rahman, Feroz F., Zaheer-ul-Haq, Nawaz S.A., Khan M.R., Choudhary M.I. New steroidal alkaloids from Sarcococca saligna. Nat. Prod. Res. 2003;17(4):235–241. doi: 10.1080/1057563021000051086. PubMed DOI

Atta-ur-Rahman, Shazia A., Afgan F., M R.K., M I.C. Two new pregnane-type steroidal alkaloids from Sarcococca saligna. Phytochemistry. 1997;46(4):771–775. doi: 10.1016/S0031-9422(97)00347-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...