Tetraspanin CD53 Promotes Inflammation but Restrains Mucus Production in a Mouse Model of Allergic Airway Inflammation
Status In-Process Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu dopisy
Grantová podpora
KWF Kankerbestrijding
Ministerstvo Školství, Mládeže a Tělovýchovy
Grantová Agentura České Republiky
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
APP1141208
National Health and Medical Research Council
H2020 European Research Council
Australian Research Training Program
Ústav Molekulární Genetiky
School of Translational Medicine, Monash University
Lékařská fakulta Univerzity Karlovy
Czech Science Foundation
68378050
Czech Academy of Sciences
14726
Dutch Cancer Society
12949
Dutch Cancer Society
PubMed
39651606
PubMed Central
PMC11969303
DOI
10.1111/all.16426
Knihovny.cz E-zdroje
Department of Immunology Alfred Research Alliance Monash University Melbourne Victoria Australia
Department of Medical BioSciences Radboud University Medical Center Nijmegen The Netherlands
Zobrazit více v PubMed
Querol Cano L., Dunlock V. E., Schwerdtfeger F., and van Spriel A. B., “Membrane Organization by Tetraspanins and Galectins Shapes Lymphocyte Function,” Nature Reviews. Immunology 24, no. 3 (2024): 193–212. PubMed
Lee H., Bae S., Jang J., et al., “CD53, a Suppressor of Inflammatory Cytokine Production, is Associated With Population Asthma Risk via the Functional Promoter Polymorphism −1560 C>T,” Biochimica et Biophysica Acta 1830, no. 4 (2013): 3011–3018. PubMed
Linden S. K., Sutton P., Karlsson N. G., Korolik V., and McGuckin M. A., “Mucins in the Mucosal Barrier to Infection,” Mucosal Immunology 1, no. 3 (2008): 183–197. PubMed PMC
Angelisova P., Vlcek C., Stefanova I., Lipoldova M., and Horejsi V., “The Human Leucocyte Surface Antigen CD53 is a Protein Structurally Similar to the CD37 and MRC OX‐44 Antigens,” Immunogenetics 32, no. 4 (1990): 281–285. PubMed
Higgins C. B., Adams J. A., Ward M. H., et al., “The Tetraspanin Transmembrane Protein CD53 Mediates Dyslipidemia and Integrates Inflammatory and Metabolic Signaling in Hepatocytes,” Journal of Biological Chemistry 299, no. 2 (2023): 102835. PubMed PMC
Wojnacki J., Lujan A. L., Brouwers N., et al., “Tetraspanin‐8 Sequesters Syntaxin‐2 to Control Biphasic Release Propensity of Mucin Granules,” Nature Communications 14, no. 1 (2023): 3710. PubMed PMC
Mendez‐Enriquez E. and Hallgren J., “Mast Cells and Their Progenitors in Allergic Asthma,” Frontiers in Immunology 10 (2019): 821. PubMed PMC
Pohlmeier L., Sonar S. S., Rodewald H. R., Kopf M., and Tortola L., “Comparative Analysis of the Role of Mast Cells in Murine Asthma Models Using Kit‐Sufficient Mast Cell‐Deficient Animals,” Allergy 76, no. 7 (2021): 2030–2043. PubMed
Demaria M. C., Yeung L., Peeters R., et al., “Tetraspanin CD53 Promotes Lymphocyte Recirculation by Stabilizing L‐Selectin Surface Expression,” iScience 23, no. 5 (2020): 101104. PubMed PMC