The mechanism of action of neuromodulation in the treatment of overactive bladder
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39653756
DOI
10.1038/s41585-024-00967-8
PII: 10.1038/s41585-024-00967-8
Knihovny.cz E-zdroje
- MeSH
- elektrostimulační terapie * metody MeSH
- hyperaktivní močový měchýř * terapie patofyziologie MeSH
- lidé MeSH
- močový měchýř inervace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Neuromodulation has been used in the treatment of various pelvic organ dysfunctions for almost 40 years and several placebo-controlled studies have confirmed its clinical effect. Many neuromodulation methods using different devices and stimulation parameters, targeting different neural structures have been introduced, but only a limited number have been adopted into routine clinical use. A substantial volume of basic research and clinical studies addressing specific effects of neuromodulation in the treatment of overactive bladder (OAB) have been published to date; however, their mechanistic implications have not been comprehensively summarized. Thus, our understanding of the mechanism of action of neuromodulation in OAB treatment is mainly based on postulated theories. Results from animal experiments suggest that different neuromodulation methods used to treat OAB share the same basic principles. The most likely explanation for the effect of neuromodulation in OAB therapy is the suppression of bladder afferent signalling, promotion of spinal guarding reflexes and modulation of non-specific supraspinal regulatory circuits.
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Regional Health Research University of Southern Denmark Odense Denmark
Department of Surgical Studies Ostrava University Ostrava Czech Republic
Department of Urology Copenhagen University Hospital Herlev and Gentofte Hospital Copenhagen Denmark
Department of Urology Odense University Hospital Odense Denmark
Department of Urology University Hospital Ostrava Czech Republic
Zobrazit více v PubMed
Haylen, B. T. et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int. Urogynecol. J. 21, 5–26 (2010). PubMed DOI
D’Ancona, C. et al. The International Continence Society (ICS) report on the terminology for adult male lower urinary tract and pelvic floor symptoms and dysfunction. Neurourol. Urodyn. 38, 433–477 (2019). PubMed DOI
Eapen, R. S. & Radomski, S. B. Review of the epidemiology of overactive bladder. Res. Rep. Urol. 8, 71–76, (2016). PubMed PMC
Leron, E., Weintraub, A. Y., Mastrolia, S. A. & Schwarzman, P. Overactive bladder syndrome: evaluation and management. Curr. Urol. 11, 117–125 (2018). PubMed DOI PMC
Bartoli, S., Aguzzi, G. & Tarricone, R. Impact on quality of life of urinary incontinence and overactive bladder: a systematic literature review. Urology 75, 491–500 (2010). PubMed DOI
Peyronnet, B. et al. A comprehensive review of overactive bladder pathophysiology: on the way to tailored treatment. Eur. Urol. 75, 988–1000 (2019). PubMed DOI
Tanagho, E. A. Neuromodulation and neurostimulation: overview and future potential. Transl. Androl. Urol. 1, 44–49, (2012). PubMed PMC
Fowler, C. J., Griffiths, D. & de Groat, W. C. The neural control of micturition. Nat. Rev. Neurosci. 9, 453–466 (2008). PubMed DOI PMC
Blok, B. F. Central pathways controlling micturition and urinary continence. Urology 59, 13–17 (2002). PubMed DOI
Lovick, T. A. Central control of visceral pain and urinary tract function. Auton. Neurosci. 200, 35–42 (2016). PubMed DOI
Yoshimura, N. & Chancellor, M. B. Neurophysiology of lower urinary tract function and dysfunction. Rev. Urol. 5, S3–S10 (2003). PubMed PMC
Yoham, A. L. & Bordoni, B. in StatPearls. (StatPearls, 2024).
Goidescu, O. C. et al. The distribution of the inferior hypogastric plexus in female pelvis. J. Med. Life 15, 784–791 (2022). PubMed DOI PMC
Hegde, S. S. Muscarinic receptors in the bladder: from basic research to therapeutics. Br. J. Pharmacol. 147, S80–S87 (2006). PubMed DOI PMC
Ye, F. et al. Applied anatomy of female pelvic plexus for nerve-sparing radical hysterectomy (NSRH). BMC Womens Health 23, 533 (2023). PubMed DOI PMC
de Groat, W. C., Griffiths, D. & Yoshimura, N. Neural control of the lower urinary tract. Compr. Physiol. 5, 327–396 (2015). PubMed DOI PMC
Chai, T. C. Continence and micturition: physiological mechanisms under behavioral control. Am. J. Physiol. Renal Physiol. 309, F33–F34 (2015). PubMed DOI
Alkatout, I., Wedel, T., Pape, J., Possover, M. & Dhanawat, J. Review: pelvic nerves — from anatomy and physiology to clinical applications. Transl. Neurosci. 12, 362–378 (2021). PubMed DOI PMC
Rojas-Gómez, M. F. et al. Regional anesthesia guided by ultrasound in the pudendal nerve territory. Colomb. J. Anesthesiol. 45, 200–209 (2017).
Aoun, F. et al. Pudendal nerve release for lower urinary tract symptoms in young males. Low. Urin. Tract. Symptoms 13, 286–290 (2021). PubMed DOI
Birder, L. et al. Neural control of the lower urinary tract: peripheral and spinal mechanisms. Neurourol. Urodyn. 29, 128–139 (2010). PubMed DOI PMC
Häbler, H. J., Jänig, W. & Koltzenburg, M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J. Physiol. 425, 545–562 (1990). PubMed DOI PMC
Michel, M. C. & Chapple, C. R. Basic mechanisms of urgency: roles and benefits of pharmacotherapy. World J. Urol. 27, 705–709, (2009). PubMed DOI PMC
Merrill, L., Gonzalez, E. J., Girard, B. M. & Vizzard, M. A. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat. Rev. Urol. 13, 193–204 (2016). PubMed DOI PMC
Deruyver, Y., Voets, T., De Ridder, D. & Everaerts, W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int. 115, 686–697 (2015). PubMed DOI
Applebaum, A. E., Vance, W. H. & Coggeshall, R. E. Segmental localization of sensory cells that innervate the bladder. J. Comp. Neurol. 192, 203–209 (1980). PubMed DOI
Danziger, Z. C. & Grill, W. M. Sensory and circuit mechanisms mediating lower urinary tract reflexes. Auton. Neurosci. 200, 21–28 (2016). PubMed DOI
Lee, C. L. et al. Sophisticated regulation of micturition: review of basic neurourology. J. Exerc. Rehabil. 17, 295–307 (2021). PubMed DOI PMC
Reitz, A., Schmid, D. M., Curt, A., Knapp, P. A. & Schurch, B. Afferent fibers of the pudendal nerve modulate sympathetic neurons controlling the bladder neck. Neurourol. Urodyn. 22, 597–601 (2003). PubMed DOI
Kim, J. W., Kim, S. J., Park, J. M., Na, Y. G. & Kim, K. H. Past, present, and future in the study of neural control of the lower urinary tract. Int. Neurourol. J. 24, 191–199 (2020). PubMed DOI PMC
Blok, B. F. Sacral neuromodulation for the treatment of urinary bladder dysfunction: mechanism of action and future directions. Bioelectron. Med. 1, 85–94 (2018). DOI
Holstege, G. How the emotional motor system controls the pelvic organs. Sex. Med. Rev. 4, 303–328 (2016). PubMed DOI
Michels, L. et al. Supraspinal control of urine storage and micturition in men-an fMRI study. Cereb. Cortex 25, 3369–3380 (2015). PubMed DOI
Zare, A., Jahanshahi, A., Rahnama’i, M. S., Schipper, S. & van Koeveringe, G. A. The role of the periaqueductal gray matter in lower urinary tract function. Mol. Neurobiol. 56, 920–934 (2019). PubMed DOI
Ding, Y. Q. et al. Direct projections from the periaqueductal gray to pontine micturition center neurons projecting to the lumbosacral cord segments: an electron microscopic study in the rat. Neurosci. Lett. 242, 97–100 (1998). PubMed DOI
Kitta, T. et al. Brain-bladder control network: the unsolved 21st century urological mystery. Int. J. Urol. 22, 342–348 (2015). PubMed DOI
Griffiths, D. Neural control of micturition in humans: a working model. Nat. Rev. Urol. 12, 695–705 (2015). PubMed DOI
Roy, H. A. & Green, A. L. The central autonomic network and regulation of bladder function. Front. Neurosci. 13, 535 (2019). PubMed DOI PMC
Pang, D., Gao, Y. & Liao, L. Functional brain imaging and central control of the bladder in health and disease. Front. Physiol. 13, 914963 (2022). PubMed DOI PMC
Yamaguchi, O. et al. Defining overactive bladder as hypersensitivity. Neurourol. Urodyn. 26, 904–907 (2007). PubMed DOI
Cardozo, L., Rovner, E., Wagg, A., Wein, A. & Abrams, P. Incontinence 7th edn. (ICI-ICS, 2023).
Chai, T. C., Russo, A., Yu, S. & Lu, M. Mucosal signaling in the bladder. Auton. Neurosci. 200, 49–56 (2016). PubMed DOI
Andersson, K. E. & McCloskey, K. D. Lamina propria: the functional center of the bladder? Neurourol. Urodyn. 33, 9–16 (2014). PubMed DOI
Banakhar, M. A., Al-Shaiji, T. F. & Hassouna, M. M. Pathophysiology of overactive bladder. Int. Urogynecol. J. 23, 975–982 (2012). PubMed DOI
Speich, J. E. et al. Are oxidative stress and ischemia significant causes of bladder damage leading to lower urinary tract dysfunction? Report from the ICI-RS 2019. Neurourol. Urodyn. 39, S16–S22 (2020). PubMed DOI PMC
Chen, L. C. & Kuo, H. C. Pathophysiology of refractory overactive bladder. Low. Urin. Tract. Symptoms 11, 177–181 (2019). PubMed DOI
Yang, J. H., Choi, H. P., Niu, W. & Azadzoi, K. M. Cellular stress and molecular responses in bladder ischemia. Int. J. Mol. Sci. 22, 11862 (2021). PubMed DOI PMC
Fusco, F. et al. Progressive bladder remodeling due to bladder outlet obstruction: a systematic review of morphological and molecular evidences in humans. BMC Urol. 18, 15 (2018). PubMed DOI PMC
Khan, Z. E. A. Chronic urinary infection in overactive bladder syndrome: a prospective, blinded case control study. Front. Cell Infect. Microbiol. 11, 752275 (2021). PubMed DOI PMC
Tyagi, P. et al. Urine cytokines suggest an inflammatory response in the overactive bladder: a pilot study. Int. Urol. Nephrol. 42, 629–635 (2010). PubMed DOI
Walter, M. et al. Considering non-bladder aetiologies of overactive bladder: a functional neuroimaging study. BJU Int. 128, 586–597 (2021). PubMed DOI
Sakakibara, R. et al. Is overactive bladder a brain disease? The pathophysiological role of cerebral white matter in the elderly. Int. J. Urol. 21, 33–38 (2014). PubMed DOI
He, Y., Hara, H. & Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016). PubMed DOI PMC
Sheyn, D. et al. Baseline brain segmental volumes in responders and nonresponders to anticholinergic therapy for overactive bladder syndrome. Female Pelvic Med. Reconstr. Surg. 27, e399–e407 (2021). PubMed DOI
Apostolidis, A. et al. Is there “brain OAB” and how can we recognize it? International Consultation on Incontinence-Research Society (ICI-RS) 2017. Neurourol. Urodyn. 37, S38–S45 (2018). PubMed DOI
Suskind, A. M. The aging overactive bladder: a review of aging-related changes from the brain to the bladder. Curr. Bladder Dysfunct. Rep. 12, 42–47 (2017). PubMed DOI PMC
Hsu, L. N., Hu, J. C., Chen, P. Y., Lee, W. C. & Chuang, Y. C. Metabolic syndrome and overactive bladder syndrome may share common pathophysiologies. Biomedicines 10, 1957 (2022).
Kullmann, F. A. et al. Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol. 222, e12919 (2018).
Saxtorph, M. Stricture Urethrae–Fistula Perinee–Retentio Urinae 265–280 (Clinsk Chirurgi, Gyldendalske Fortag, 1878).
Brindley, G. S., Polkey, C. E., Rushton, D. N. & Cardozo, L. Sacral anterior root stimulators for bladder control in paraplegia: the first 50 cases. J. Neurol. Neurosurg. Psychiatry 49, 1104–1114 (1986). PubMed DOI PMC
Schmidt, R. A. & Tanagho, E. A. Feasibility of controlled micturition through electric stimulation. Urol. Int. 34, 199–230 (1979). PubMed DOI
Heine, J. P., Schmidt, R. A. & Tanagho, E. A. Intraspinal sacral root stimulation for controlled micturition. Invest. Urol. 15, 78–82 (1977). PubMed
Gaunt, R. A. & Prochazka, A. Control of urinary bladder function with devices: successes and failures. Prog. Brain Res. 152, 163–194 (2006). PubMed DOI
McGuire, E. J., Zhang, S. C., Horwinski, E. R. & Lytton, B. Treatment of motor and sensory detrusor instability by electrical stimulation. J. Urol. 129, 78–79 (1983). PubMed DOI
Stoller, M. L. Afferent nerve stimulation for pelvic floor dysfunction. Int. Urogynecol. J. 10, 99 (1999).
Visca, A., Lay, R., Sessions, A. E., Rabinowitz, R. & Ajay, D. History of peripheral tibial nerve stimulation in urology. Urology 174, 3–6 (2023). PubMed DOI
Schmidt, R. A. et al. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral Nerve Stimulation Study Group. J. Urol. 162, 352–357 (1999). PubMed DOI
Govier, F. E., Litwiller, S., Nitti, V., Kreder, K. J. Jr. & Rosenblatt, P. Percutaneous afferent neuromodulation for the refractory overactive bladder: results of a multicenter study. J. Urol. 165, 1193–1198 (2001). PubMed DOI
Janssen, D. A., Martens, F. M., de Wall, L. L., van Breda, H. M. & Heesakkers, J. P. Clinical utility of neurostimulation devices in the treatment of overactive bladder: current perspectives. Med. Devices 10, 109–122 (2017). DOI
Siegel, S. et al. Five-year followup results of a prospective, multicenter study of patients with overactive bladder treated with sacral neuromodulation. J. Urol. 199, 229–236 (2018). PubMed DOI
Pezzella, A. et al. Two-year outcomes of the ARTISAN-SNM study for the treatment of urinary urgency incontinence using the Axonics rechargeable sacral neuromodulation system. Neurourol. Urodyn. 40, 714–721 (2021). PubMed DOI PMC
Meng, L. et al. Sacral neuromodulation for overactive bladder using the InterStim and BetterStim systems. Sci. Rep. 12, 22299 (2022). PubMed DOI PMC
Liao, L. et al. Sacral neuromodulation using a novel device with a six-contact-point electrode for the treatment of patients with refractory overactive bladder: a multicenter, randomized, single-blind, parallel-control clinical trial. Eur. Urol. Focus. 8, 1823–1830 (2022). PubMed DOI
van Kerrebroeck, P. et al. First-in-human implantation of a mid-field powered neurostimulator at the sacral nerve: results from an acute study. Neurourol. Urodyn. 38, 1669–1675 (2019). PubMed DOI
Peters, K. M. et al. Randomized trial of percutaneous tibial nerve stimulation versus Sham efficacy in the treatment of overactive bladder syndrome: results from the SUmiT trial. J. Urol. 183, 1438–1443 (2010). PubMed DOI
Finazzi-Agrò, E. et al. Percutaneous tibial nerve stimulation effects on detrusor overactivity incontinence are not due to a placebo effect: a randomized, double-blind, placebo controlled trial. J. Urol. 184, 2001–2006 (2010). PubMed DOI
Moossdorff-Steinhauser, H. F. & Berghmans, B. Effects of percutaneous tibial nerve stimulation on adult patients with overactive bladder syndrome: a systematic review. Neurourol. Urodyn. 32, 206–214 (2013). PubMed DOI
Booth, J., Connelly, L., Dickson, S., Duncan, F. & Lawrence, M. The effectiveness of transcutaneous tibial nerve stimulation (TTNS) for adults with overactive bladder syndrome: a systematic review. Neurourol. Urodyn. 37, 528–541 (2018). PubMed DOI
van Breda, H. M. K., Martens, F. M. J., Tromp, J. & Heesakkers, J. A new implanted posterior tibial nerve stimulator for the treatment of overactive bladder syndrome: 3-month results of a novel therapy at a single center. J. Urol. 198, 205–210 (2017). PubMed DOI
Vollstedt, A. & Gilleran, J. Update on implantable PTNS devices. Curr. Urol. Rep. 21, 28 (2020). PubMed DOI
Dorsthorst, M. J. T. et al. 3-year followup of a new implantable tibial nerve stimulator for the treatment of overactive bladder syndrome. J. Urol. 204, 545–550 (2020). PubMed DOI
Gilling, P. et al. Twelve-month durability of a fully-implanted, nickel-sized and shaped tibial nerve stimulator for the treatment of overactive bladder syndrome with urgency urinary incontinence: a single-arm, prospective study. Urology 157, 71–78 (2021). PubMed DOI
Krhut, J. et al. Prospective, randomized, multicenter trial of peroneal electrical transcutaneous neuromodulation vs solifenacin in treatment-naive patients with overactive bladder. J. Urol. 209, 734–741 (2023). PubMed DOI
Krhut, J. et al. Peroneal electric transcutaneous neuromodulation (eTNM PubMed DOI PMC
Groen, J., Amiel, C. & Bosch, J. L. Chronic pudendal nerve neuromodulation in women with idiopathic refractory detrusor overactivity incontinence: results of a pilot study with a novel minimally invasive implantable mini-stimulator. Neurourol. Urodyn. 24, 226–230 (2005). PubMed DOI
Possover, M. A new technique of laparoscopic implantation of stimulation electrode to the pudendal nerve for treatment of refractory fecal incontinence and/or overactive bladder with urinary incontinence. J. Minim. Invasive Gynecol. 21, 729 (2014). PubMed DOI
Spinelli, M. et al. A new minimally invasive procedure for pudendal nerve stimulation to treat neurogenic bladder: description of the method and preliminary data. Neurourol. Urodyn. 24, 305–309 (2005). PubMed DOI
Peters, K. M., Feber, K. M. & Bennett, R. C. Sacral versus pudendal nerve stimulation for voiding dysfunction: a prospective, single-blinded, randomized, crossover trial. Neurourol. Urodyn. 24, 643–647 (2005). PubMed DOI
Farag, F. F., Martens, F. M., Rijkhoff, N. J. & Heesakkers, J. P. Dorsal genital nerve stimulation in patients with detrusor overactivity: a systematic review. Curr. Urol. Rep. 13, 385–388 (2012). PubMed DOI
Parodi, S., Kendall, H. J., Terrone, C. & Heesakkers, J. P. Evolving types of pudendal neuromodulation for lower urinary tract dysfunction. Cent. European J. Urol. 77, 82–88 (2024). PubMed PMC
Tish, M. M. & Geerling, J. C. The brain and the bladder: forebrain control of urinary (in)continence. Front. Physiol. 11, 658 (2020). PubMed DOI PMC
Fan, Y. H., Lin, C. C., Lin, A. T. & Chen, K. K. Are patients with the symptoms of overactive bladder and urodynamic detrusor overactivity different from those with overactive bladder but not detrusor overactivity? J. Chin. Med. Assoc. 74, 455–459 (2011). PubMed DOI
Shen, J. D. et al. Review of animal models to study urinary bladder function. Biology 10, 1316 (2021).
Wang, Y. & Hassouna, M. M. Neuromodulation reduces c-fos gene expression in spinalized rats: a double-blind randomized study. J. Urol. 163, 1966–1970 (2000). PubMed DOI
Shaker, H. et al. Role of C-afferent fibres in the mechanism of action of sacral nerve root neuromodulation in chronic spinal cord injury. BJU Int. 85, 905–910 (2000). PubMed DOI
Brink, T. S., Zimmerman, P. L., Mattson, M. A., Su, X. & Nelson, D. E. A chronic, conscious large animal platform to quantify therapeutic effects of sacral neuromodulation on bladder function. J. Urol. 194, 252–258 (2015). PubMed DOI
Kovacevic, M. & Yoo, P. B. Reflex neuromodulation of bladder function elicited by posterior tibial nerve stimulation in anesthetized rats. Am. J. Physiol. Renal Physiol. 308, F320–F329 (2015). PubMed DOI
Dieter, A. A., Degoski, D. J., Dolber, P. C. & Fraser, M. O. The effects of bilateral bipolar sacral neurostimulation on urinary bladder activity during filling before and after irritation in a rat model. Neurourol. Urodyn. 34, 387–391 (2015). PubMed DOI
Ren, J., Chew, D. J. & Thiruchelvam, N. Electrical stimulation of the spinal dorsal root inhibits reflex bladder contraction and external urethra sphincter activity: is this how sacral neuromodulation works? Urol. Int. 96, 360–366 (2016). PubMed DOI
Tai, C. et al. Prolonged poststimulation inhibition of bladder activity induced by tibial nerve stimulation in cats. Am. J. Physiol. Renal Physiol. 300, F385–F392 (2011). PubMed DOI PMC
Matsuta, Y., Roppolo, J. R., de Groat, W. C. & Tai, C. Poststimulation inhibition of the micturition reflex induced by tibial nerve stimulation in rats. Physiol. Rep. 2, e00205 (2014). PubMed DOI PMC
Park, E. et al. The long-lasting post-stimulation inhibitory effects of bladder activity induced by posterior tibial nerve stimulation in unanesthetized rats. Sci. Rep. 10, 19897 (2020). PubMed DOI PMC
Boggs, J. W., Wenzel, B. J., Gustafson, K. J. & Grill, W. M. Spinal micturition reflex mediated by afferents in the deep perineal nerve. J. Neurophysiol. 93, 2688–2697 (2005). PubMed DOI
Woock, J. P., Yoo, P. B. & Grill, W. M. Intraurethral stimulation evokes bladder responses via 2 distinct reflex pathways. J. Urol. 182, 366–373 (2009). PubMed DOI PMC
Theisen, K. et al. Frequency dependent tibial neuromodulation of bladder underactivity and overactivity in cats. Neuromodulation 21, 700–706 (2018). PubMed DOI PMC
Tai, C. et al. Plasticity of urinary bladder reflexes evoked by stimulation of pudendal afferent nerves after chronic spinal cord injury in cats. Exp. Neurol. 228, 109–117 (2011). PubMed DOI
Bandari, J. et al. Neurotransmitter mechanisms underlying sacral neuromodulation of bladder overactivity in cats. Neuromodulation 20, 81–87 (2017). PubMed DOI
Kadow, B. T. et al. Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity. Am. J. Physiol. Renal Physiol. 311, F78–F84 (2016). PubMed DOI PMC
Rogers, M. J. et al. Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R42–R49 (2015). PubMed DOI
Lyon, T. D. et al. Pudendal but not tibial nerve stimulation inhibits bladder contractions induced by stimulation of pontine micturition center in cats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R366–R374 (2016). PubMed DOI
Dray, A. & Metsch, R. Inhibition of urinary bladder contractions by a spinal action of morphine and other opioids. J. Pharmacol. Exp. Ther. 231, 254–260 (1984). PubMed DOI
Hisamitsu, T. & de Groat, W. C. The inhibitory effect of opioid peptides and morphine applied intrathecally and intracerebroventricularly on the micturition reflex in the cat. Brain Res. 298, 51–65 (1984). PubMed DOI
Noto, H. et al. Opioid modulation of the micturition reflex at the level of the pontine micturition center. Urol. Int. 47, 19–22 (1991). PubMed DOI
Roppolo, J. R., Booth, A. M. & De Groat, W. C. The effects of naloxone on the neural control of the urinary bladder of the cat. Brain Res. 264, 355–358 (1983). PubMed DOI
Willette, R. N., Morrison, S., Sapru, H. N. & Reis, D. J. Stimulation of opiate receptors in the dorsal pontine tegmentum inhibits reflex contraction of the urinary bladder. J. Pharmacol. Exp. Ther. 244, 403–409 (1988). PubMed DOI
Su, X., Nickles, A. & Nelson, D. E. Role of the endogenous opioid system in modulation of urinary bladder activity by spinal nerve stimulation. Am. J. Physiol. Renal Physiol. 305, F52–F60 (2013). PubMed DOI PMC
Pintauro, M. et al. Role of opioid and β-adrenergic receptors in bladder underactivity induced by prolonged pudendal nerve stimulation in cats. Neurourol. Urodyn. 42, 1344–1351 (2023). PubMed DOI PMC
Tai, C. et al. Differential role of opioid receptors in tibial nerve inhibition of nociceptive and nonnociceptive bladder reflexes in cats. Am. J. Physiol. Renal Physiol. 302, F1090–F1097 (2012). PubMed DOI PMC
Befort, K. Interactions of the opioid and cannabinoid systems in reward: insights from knockout studies. Front. Pharmacol. 6, 6 (2015). PubMed PMC
Jiang, X. et al. Role of cannabinoid receptor type 1 in tibial and pudendal neuromodulation of bladder overactivity in cats. Am. J. Physiol. Renal Physiol. 312, F482–F488 (2017). PubMed DOI
Malcangio, M. & Bowery, N. G. GABA and its receptors in the spinal cord. Trends Pharmacol. Sci. 17, 457–462 (1996). PubMed DOI
DeGroat, W. C. The effects of glycine, GABA and strychnine on sacral parasympathetic preganglionic neurones. Brain Res. 18, 542–544 (1970). PubMed DOI
Igawa, Y., Mattiasson, A. & Andersson, K. E. Effects of GABA-receptor stimulation and blockade on micturition in normal rats and rats with bladder outflow obstruction. J. Urol. 150, 537–542 (1993). PubMed DOI
McGee, M. J., Danziger, Z. C., Bamford, J. A. & Grill, W. M. A spinal GABAergic mechanism is necessary for bladder inhibition by pudendal afferent stimulation. Am. J. Physiol. Renal Physiol. 307, F921–F930 (2014). PubMed DOI PMC
Fuller, T. W. et al. Sex difference in the contribution of GABA PubMed DOI
Jiang, X. et al. Contribution of GABAA, glycine, and opioid receptors to sacral neuromodulation of bladder overactivity in cats. J. Pharmacol. Exp. Ther. 359, 436–441 (2016). PubMed DOI PMC
Wein, A. J. Re: spinal GABAergic mechanism is necessary for bladder inhibition by pudendal afferent stimulation. J. Urol. 196, 1215–1216 (2016). PubMed DOI
Miller, K. E., Hoffman, E. M., Sutharshan, M. & Schechter, R. Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms. Pharmacol. Ther. 130, 283–309 (2011). PubMed DOI PMC
Uy, J. et al. Glutamatergic mechanisms involved in bladder overactivity and pudendal neuromodulation in cats. J. Pharmacol. Exp. Ther. 362, 53–58 (2017). PubMed DOI PMC
Ramage, A. G. The role of central 5-hydroxytryptamine (5-HT, serotonin) receptors in the control of micturition. Br. J. Pharmacol. 147, S120–S131 (2006). PubMed DOI PMC
Danuser, H. & Thor, K. B. Spinal 5-HT2 receptor-mediated facilitation of pudendal nerve reflexes in the anaesthetized cat. Br. J. Pharmacol. 118, 150–154 (1996). PubMed DOI PMC
Matsuta, Y. et al. Effect of methysergide on pudendal inhibition of micturition reflex in cats. Exp. Neurol. 247, 250–258 (2013). PubMed DOI PMC
Kakizaki, H. & de Groat, W. C. Role of spinal nitric oxide in the facilitation of the micturition reflex by bladder irritation. J. Urol. 155, 355–360 (1996). PubMed DOI
Minardi, D. et al. Activity and expression of nitric oxide synthase in rat bladder after sacral neuromodulation. Int. J. Immunopathol. Pharmacol. 21, 129–135 (2008). PubMed DOI
Douven, P. et al. Sacral neuromodulation for lower urinary tract and bowel dysfunction in animal models: a systematic review with focus on stimulation parameter selection. Neuromodulation 23, 1094–1107 (2020). PubMed DOI PMC
Wan, X., Liang, Y., Li, X. & Liao, L. Inhibitory effects of a minimally invasive implanted tibial nerve stimulation device on non-nociceptive bladder reflexes in cats. Int. Urol. Nephrol. 53, 431–438 (2021). PubMed DOI
Shapiro, K. et al. Additive inhibition of reflex bladder activity induced by bilateral pudendal neuromodulation in cats. Front. Neurosci. 14, 80 (2020). PubMed DOI PMC
Zhang, F. et al. Neural pathways involved in sacral neuromodulation of reflex bladder activity in cats. Am. J. Physiol. Renal Physiol. 304, F710–F717 (2013). PubMed DOI
Li, X. et al. Frequency-dependent effects on bladder reflex by saphenous nerve stimulation and a possible action mechanism of tibial nerve stimulation in cats. Int. Neurourol. J. 25, 128–136 (2021). PubMed DOI PMC
Noblett, K. et al. Results of a prospective, multicenter study evaluating quality of life, safety, and efficacy of sacral neuromodulation at twelve months in subjects with symptoms of overactive bladder. Neurourol. Urodyn. 35, 246–251 (2016). PubMed DOI
de Wall, L. L. & Heesakkers, J. P. Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome. Res. Rep. Urol. 9, 145–157 (2017). PubMed PMC
Groenendijk, P. M. et al. Urodynamic evaluation of sacral neuromodulation for urge urinary incontinence. BJU Int. 101, 325–329 (2008). PubMed DOI
Amarenco, G. et al. Urodynamic effect of acute transcutaneous posterior tibial nerve stimulation in overactive bladder. J. Urol. 169, 2210–2215 (2003). PubMed DOI
Doherty, S., Vanhoestenberghe, A., Duffell, L., Hamid, R. & Knight, S. A urodynamic comparison of neural targets for transcutaneous electrical stimulation to acutely suppress detrusor contractions following spinal cord injury. Front. Neurosci. 13, 1360 (2019). PubMed DOI PMC
Girtner, F. et al. Randomized crossover-controlled evaluation of simultaneous bilateral transcutaneous electrostimulation of the posterior tibial nerve during urodynamic studies in patients with lower urinary tract symptoms. Int. Neurourol. J. 25, 337–346 (2021). PubMed DOI PMC
Bosch, J. L. & Groen, J. Neuromodulation: urodynamic effects of sacral (S3) spinal nerve stimulation in patients with detrusor instability or detrusor hyperflexia. Behav. Brain Res. 92, 141–150 (1998). PubMed DOI
Groen, J., Ruud Bosch, J. L. & van Mastrigt, R. Sacral neuromodulation in women with idiopathic detrusor overactivity incontinence: decreased overactivity but unchanged bladder contraction strength and urethral resistance during voiding. J. Urol. 175, 1005–1009 (2006). discussion 1009. PubMed DOI
Van Meel, T. D. & Wyndaele, J. J. Reproducibility of urodynamic filling sensation at weekly interval in healthy volunteers and in women with detrusor overactivity. Neurourol. Urodyn. 30, 1586–1590 (2011). PubMed DOI
Flisser, A. J., Walmsley, K. & Blaivas, J. G. Urodynamic classification of patients with symptoms of overactive bladder. J. Urol. 169, 529–533 (2003). discussion 533–524. PubMed DOI
Lee, S. R., Kim, H. J., Kim, A. & Kim, J. H. Overactive bladder is not only overactive but also hypersensitive. Urology 75, 1053–1059 (2010). PubMed DOI
Erol, B., Danacioglu, Y. O. & Peters, K. M. Current advances in neuromodulation techniques in urology practices: a review of literature. Turk. J. Urol. 47, 375–385 (2021). PubMed DOI
Wenzler, D. L., Burks, F. N., Cooney, M. & Peters, K. M. Proof of concept trial on changes in current perception threshold after sacral neuromodulation. Neuromodulation 18, 228–231 (2015). discussion 232. PubMed DOI
Chermansky, C. J. & Moalli, P. A. Role of pelvic floor in lower urinary tract function. Auton. Neurosci. 200, 43–48 (2016). PubMed DOI
Schmidt, R. A., Bruschini, H. & Tanagho, E. A. Sacral root stimulation in controlled micturition. Peripheral somatic neurotomy and stimulated voiding. Invest. Urol. 17, 130–134 (1979). PubMed
Fowler, C. J., Swinn, M. J., Goodwin, R. J., Oliver, S. & Craggs, M. Studies of the latency of pelvic floor contraction during peripheral nerve evaluation show that the muscle response is reflexly mediated. J. Urol. 163, 881–883 (2000). PubMed DOI
Vaganee, D. et al. Neural pathway of bellows response during SNM treatment revisited: conclusive evidence for direct efferent motor response. Neurourol. Urodyn. 39, 1576–1583 (2020). PubMed DOI
Voorham, J. et al. Sacral neuromodulation changes pelvic floor activity in overactive bladder patients — possible new insights in mechanism of action: a pilot study. Neuromodulation 25, 1180–1186 (2022). PubMed DOI
Knowles, C. H. et al. The science behind programming algorithms for sacral neuromodulation. Colorectal Dis. 23, 592–602 (2021). PubMed DOI
Blok, B. F., Groen, J., Bosch, J. L., Veltman, D. J. & Lammertsma, A. A. Different brain effects during chronic and acute sacral neuromodulation in urge incontinent patients with implanted neurostimulators. BJU Int. 98, 1238–1243 (2006). PubMed DOI
Gill, B. C. et al. Real-time changes in brain activity during sacral neuromodulation for overactive bladder. J. Urol. 198, 1379–1385 (2017). PubMed DOI
Weissbart, S. J. et al. Specific changes in brain activity during urgency in women with overactive bladder after successful sacral neuromodulation: a functional magnetic resonance imaging study. J. Urol. 200, 382–388 (2018). PubMed DOI
Pang, D., Liao, L., Chen, G. & Wang, Y. Sacral neuromodulation improves abnormal prefrontal brain activity in patients with overactive bladder: a possible central mechanism. J. Urol. 207, 1256–1267 (2022). PubMed DOI
Mehnert, U. et al. Brain activation in response to bladder filling and simultaneous stimulation of the dorsal clitoral nerve — an fMRI study in healthy women. Neuroimage 41, 682–689 (2008). PubMed DOI
Li, X., Fang, R., Liao, L. & Li, X. Real-time changes in brain activity during tibial nerve stimulation for overactive bladder: evidence from functional near-infrared spectroscopy hype scanning. Front. Neurosci. 17, 1115433 (2023). PubMed DOI PMC
Krhut, J. et al. Differences between brain responses to peroneal electrical transcutaneous neuromodulation and transcutaneous tibial nerve stimulation, two treatments for overactive bladder. Neurourol. Urodyn. 42, 1352–1361 (2023). PubMed DOI
Moazzam, Z. & Yoo, P. B. Prolonged inhibition of bladder function is evoked by low-amplitude electrical stimulation of the saphenous nerve in urethane-anesthetized rats. Physiol. Rep. 10, e15517 (2022). PubMed DOI PMC
Ness, T. J., Randich, A., Nelson, D. E. & Su, X. Screening and optimization of nerve targets and parameters reveals inhibitory effect of pudendal stimulation on rat bladder hypersensitivity. Reg. Anesth. Pain. Med. 41, 737–743 (2016). PubMed DOI
de Groat, W. C. & Theobald, R. J. Reflex activation of sympathetic pathways to vesical smooth muscle and parasympathetic ganglia by electrical stimulation of vesical afferents. J. Physiol. 259, 223–237 (1976). PubMed DOI PMC
Duchalais, E. et al. Long-term results of sacral neuromodulation for the treatment of anorectal diseases. J. Visc. Surg. 159, 463–470 (2022). PubMed DOI
Huang, J. et al. The current status and trend of the functional magnetic resonance combined with stimulation in animals. Front. Neurosci. 16, 963175 (2022). PubMed DOI PMC
Jairam, R. et al. Predictive factors in sacral neuromodulation: a systematic review. Urol. Int. 106, 323–343 (2022). PubMed DOI
Choudhary, M., van Mastrigt, R. & van Asselt, E. The frequency spectrum of bladder non-voiding activity as a trigger-event for conditional stimulation: closed-loop inhibition of bladder contractions in rats. Neurourol. Urodyn. 37, 1567–1573 (2018). PubMed DOI
Majerus, S. J. A. et al. Feasibility of real-time conditional sacral neuromodulation using wireless bladder pressure sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 2067–2075 (2021). PubMed DOI PMC
Ouyang, Z. et al. Closed-loop sacral neuromodulation for bladder function using dorsal root ganglia sensory feedback in an anesthetized feline model. Med. Biol. Eng. Comput. 60, 1527–1540 (2022). PubMed DOI PMC
Chen, S. C., Chu, P. Y., Hsieh, T. H., Li, Y. T. & Peng, C. W. Feasibility of deep brain stimulation for controlling the lower urinary tract functions: an animal study. Clin. Neurophysiol. 128, 2438–2449 (2017). PubMed DOI