• This record comes from PubMed

Development of an rpS6-Based Ex Vivo Assay for the Analysis of Neuronal Activity in Mouse and Human Olfactory Systems

. 2024 Dec 07 ; 25 (23) : . [epub] 20241207

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
310030_185161 Swiss National Science Foundation - Switzerland

Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.

See more in PubMed

Firestein S. How the olfactory system makes sense of scents. Nature. 2001;413:211–218. doi: 10.1038/35093026. PubMed DOI

Munger S.D., Leinders-Zufall T., Zufall F. Subsystem organization of the mammalian sense of smell. Annu. Rev. Physiol. 2009;71:115–140. doi: 10.1146/annurev.physiol.70.113006.100608. PubMed DOI

Brechbühl J., de Valliere A., Wood D., Nenniger Tosato M., Broillet M.C. The Grueneberg ganglion controls odor-driven food choices in mice under threat. Commun. Biol. 2020;3:533. doi: 10.1038/s42003-020-01257-w. PubMed DOI PMC

Ma M. Odor and pheromone sensing via chemoreceptors. Adv. Exp. Med. Biol. 2012;739:93–106. doi: 10.1007/978-1-4614-1704-0_6. PubMed DOI

Touhara K., Vosshall L.B. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 2009;71:307–332. doi: 10.1146/annurev.physiol.010908.163209. PubMed DOI

Brennan P.A. The vomeronasal system. Cell Mol. Life Sci. 2001;58:546–555. doi: 10.1007/PL00000880. PubMed DOI PMC

Mombaerts P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 2004;5:263–278. doi: 10.1038/nrn1365. PubMed DOI

Logan D.W., Brunet L.J., Webb W.R., Cutforth T., Ngai J., Stowers L. Learned recognition of maternal signature odors mediates the first suckling episode in mice. Curr. Biol. 2012;22:1998–2007. doi: 10.1016/j.cub.2012.08.041. PubMed DOI PMC

Brechbühl J., Klaey M., Broillet M.C. Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science. 2008;321:1092–1095. doi: 10.1126/science.1160770. PubMed DOI

Brechbühl J., Moine F., Klaey M., Nenniger-Tosato M., Hurni N., Sporkert F., Giroud C., Broillet M.C. Mouse alarm pheromone shares structural similarity with predator scents. Proc. Natl. Acad. Sci. USA. 2013;110:4762–4767. doi: 10.1073/pnas.1214249110. PubMed DOI PMC

Chao Y.C., Fleischer J., Yang R.B. Guanylyl cyclase-G is an alarm pheromone receptor in mice. EMBO J. 2018;37:39–49. doi: 10.15252/embj.201797155. PubMed DOI PMC

Mamasuew K., Hofmann N., Kretzschmann V., Biel M., Yang R.B., Breer H., Fleischer J. Chemo- and thermosensory responsiveness of Grueneberg ganglion neurons relies on cyclic guanosine monophosphate signaling elements. Neurosignals. 2011;19:198–209. doi: 10.1159/000329333. PubMed DOI

Brechbühl J., Moine F., Broillet M.C. Mouse Grueneberg ganglion neurons share molecular and functional features with C. elegans amphid neurons. Front. Behav. Neurosci. 2013;7:193. doi: 10.3389/fnbeh.2013.00193. PubMed DOI PMC

Schmid A., Pyrski M., Biel M., Leinders-Zufall T., Zufall F. Grueneberg ganglion neurons are finely tuned cold sensors. J. Neurosci. 2010;30:7563–7568. doi: 10.1523/JNEUROSCI.0608-10.2010. PubMed DOI PMC

Lessmann M.E., Guducu C., Ibarlucea B., Hummel T. Electrophysiological Recordings from the Olfactory Epithelium and Human Brain in Response to Stimulation with HLA Related Peptides. Neuroscience. 2021;473:44–51. doi: 10.1016/j.neuroscience.2021.08.005. PubMed DOI

Hernandez-Clavijo A., Sanchez Trivino C.A., Guarneri G., Ricci C., Mantilla-Esparza F.A., Gonzalez-Velandia K.Y., Boscolo-Rizzo P., Tofanelli M., Bonini P., Dibattista M., et al. Shedding light on human olfaction: Electrophysiological recordings from sensory neurons in acute slices of olfactory epithelium. iScience. 2023;26:107186. doi: 10.1016/j.isci.2023.107186. PubMed DOI PMC

Lin A., Qin S., Casademunt H., Wu M., Hung W., Cain G., Tan N.Z., Valenzuela R., Lesanpezeshki L., Venkatachalam V., et al. Functional imaging and quantification of multineuronal olfactory responses in C. elegans. Sci. Adv. 2023;9:eade1249. doi: 10.1126/sciadv.ade1249. PubMed DOI PMC

Brechbühl J., Klaey M., Moine F., Bovay E., Hurni N., Nenniger Tosato M., Broillet M.-C. Morphological and physiological species-dependent characteristics of the rodent Grueneberg ganglion. Front. Neuroanat. 2014;8:87. doi: 10.3389/fnana.2014.00087. PubMed DOI PMC

Liu C.Y., Xiao C., Fraser S.E., Lester H.A., Koos D.S. Electrophysiological characterization of Grueneberg ganglion olfactory neurons: Spontaneous firing, sodium conductance, and hyperpolarization-activated currents. J. Neurophysiol. 2012;108:1318–1334. doi: 10.1152/jn.00907.2011. PubMed DOI PMC

Hanke W., Mamasuew K., Biel M., Yang R.B., Fleischer J. Odorant-evoked electrical responses in Grueneberg ganglion neurons rely on cGMP-associated signaling proteins. Neurosci. Lett. 2013;539:38–42. doi: 10.1016/j.neulet.2013.01.032. PubMed DOI

Haga S., Kimoto H., Touhara K. Molecular characterization of vomeronasal sensory neurons responding to a male-specific peptide in tear fluid: Sexual communication in mice. Pure Appl. Chem. 2007;79:775–783. doi: 10.1351/pac200779040775. DOI

Aparicio S.Y.L., Fierro A.D.L., Abreu G.E.A., Cárdenas R., Hernández L.I.T.G., Avila G.A.C., Durán F., Aguilar M.E.H., Denes J.M., Chi-Castañeda L.D., et al. Current Opinion on the Use of c-Fos in Neuroscience. Neurosci. 2022;3:687–702. doi: 10.3390/neurosci3040050. PubMed DOI PMC

Bepari A.K., Watanabe K., Yamaguchi M., Tamamaki N., Takebayashi H. Visualization of odor-induced neuronal activity by immediate early gene expression. BMC Neurosci. 2012;13:140. doi: 10.1186/1471-2202-13-140. PubMed DOI PMC

Mamasuew K., Hofmann N., Breer H., Fleischer J. Grueneberg ganglion neurons are activated by a defined set of odorants. Chem. Senses. 2011;36:271–282. doi: 10.1093/chemse/bjq124. PubMed DOI

Isogai Y., Si S., Pont-Lezica L., Tan T., Kapoor V., Murthy V.N., Dulac C. Molecular organization of vomeronasal chemoreception. Nature. 2011;478:241–245. doi: 10.1038/nature10437. PubMed DOI PMC

Norlin E.M., Vedin V., Bohm S., Berghard A. Odorant-dependent, spatially restricted induction of c-fos in the olfactory epithelium of the mouse. J. Neurochem. 2005;93:1594–1602. doi: 10.1111/j.1471-4159.2005.03159.x. PubMed DOI

Lopes A.C., Brechbuhl J., Ferreira F., Amez-Droz M., Broillet M.C. From In Vitro Data to In Vivo Interspecies Danger Communication: A Study of Chemosensing via the Mouse Grueneberg Ganglion. Animals. 2022;12:356. doi: 10.3390/ani12030356. PubMed DOI PMC

Knight Z.A., Tan K., Birsoy K., Schmidt S., Garrison J.L., Wysocki R.W., Emiliano A., Ekstrand M.I., Friedman J.M. Molecular Profiling of Activated Neurons by Phosphorylated Ribosome Capture. Cell. 2012;151:1126–1137. doi: 10.1016/j.cell.2012.10.039. PubMed DOI PMC

de Valliere A., Lopes A.C., Addorisio A., Gilliand N., Nenniger Tosato M., Wood D., Brechbühl J., Broillet M.C. Food preference acquired by social transmission is altered by the absence of the olfactory marker protein in mice. Front. Nutr. 2022;9:1026373. doi: 10.3389/fnut.2022.1026373. PubMed DOI PMC

von der Weid B., Rossier D., Lindup M., Tuberosa J., Widmer A., Col J.D., Kan C., Carleton A., Rodriguez I. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat. Neurosci. 2015;18:1455–1463. doi: 10.1038/nn.4100. PubMed DOI

Mamasuew K., Breer H., Fleischer J. Grueneberg ganglion neurons respond to cool ambient temperatures. Eur. J. Neurosci. 2008;28:1775–1785. doi: 10.1111/j.1460-9568.2008.06465.x. PubMed DOI

Valvano J.W. Optical Thermal Response of Laser-Irradiated Tissue. 2nd ed. Springer; Boston, MA, USA: 2011. Tissue Thermal Properties and Perfusion; pp. 455–485. DOI

Huang Z.B., Tatti R., Loeven A.M., Conde D.R.L., Fadool D.A. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front. Cell. Neurosci. 2021;15:662184. doi: 10.3389/fncel.2021.662184. PubMed DOI PMC

Potter S.M., Zheng C., Koos D.S., Feinstein P., Fraser S.E., Mombaerts P. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 2001;21:9713–9723. doi: 10.1523/JNEUROSCI.21-24-09713.2001. PubMed DOI PMC

Nakashima N., Nakashima K., Taura A., Takaku-Nakashima A., Ohmori H., Takano M. Olfactory marker protein directly buffers cAMP to avoid depolarization-induced silencing of olfactory receptor neurons. Nat. Commun. 2020;11:2188. doi: 10.1038/s41467-020-15917-2. PubMed DOI PMC

Matsuo T., Hattori T., Asaba A., Inoue N., Kanomata N., Kikusui T., Kobayakawa R., Kobayakawa K. Genetic dissection of pheromone processing reveals main olfactory system-mediated social behaviors in mice. Proc. Natl. Acad. Sci. USA. 2015;112:E311–E320. doi: 10.1073/pnas.1416723112. PubMed DOI PMC

Kobayakawa K., Kobayakawa R., Matsumoto H., Oka Y., Imai T., Ikawa M., Okabe M., Ikeda T., Itohara S., Kikusui T., et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature. 2007;450:503–508. doi: 10.1038/nature06281. PubMed DOI

Leinders-Zufall T., Lane A.P., Puche A.C., Ma W., Novotny M.V., Shipley M.T., Zufall F. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 2000;405:792–796. doi: 10.1038/35015572. PubMed DOI

Bumbalo R., Lieber M., Lehmann E., Wolf I., Breer H., Fleischer J. Attenuated Chemosensory Responsiveness of the Grueneberg Ganglion in Mouse Pups at Warm Temperatures. Neuroscience. 2017;366:149–161. doi: 10.1016/j.neuroscience.2017.10.012. PubMed DOI

Matsuki M., Yamashita F., Ishida-Yamamoto A., Yamada K., Kinoshita C., Fushiki S., Ueda E., Morishima Y., Tabata K., Yasuno H., et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase) Proc. Natl. Acad. Sci. USA. 1998;95:1044–1049. doi: 10.1073/pnas.95.3.1044. PubMed DOI PMC

Brechbühl J., Luyet G., Moine F., Rodriguez I., Broillet M.C. Imaging pheromone sensing in a mouse vomeronasal acute tissue slice preparation. J. Vis. Exp. 2011;58:3311. doi: 10.3791/3311-v. PubMed DOI PMC

Fitzek M., Patel P.K., Solomon P.D., Lin B., Hummel T., Schwob J.E., Holbrook E.H. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. J. Comp. Neurol. 2022;530:2154–2175. doi: 10.1002/cne.25325. PubMed DOI PMC

Perez-Gomez A., Bleymehl K., Stein B., Pyrski M., Birnbaumer L., Munger S.D., Leinders-Zufall T., Zufall F., Chamero P. Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus. Curr. Biol. 2015;25:1340–1346. doi: 10.1016/j.cub.2015.03.026. PubMed DOI PMC

Ring N.A.R., Dworak H., Bachmann B., Schadl B., Valdivieso K., Rozmaric T., Heimel P., Fischer I., Klinaki E., Gutasi A., et al. The p-rpS6-zone delineates wounding responses and the healing process. Dev. Cell. 2023;58:981–992.e986. doi: 10.1016/j.devcel.2023.04.001. PubMed DOI

Khan M., Yoo S.J., Clijsters M., Backaert W., Vanstapel A., Speleman K., Lietaer C., Choi S., Hether T.D., Marcelis L., et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184:5932–5949.e5915. doi: 10.1016/j.cell.2021.10.027. PubMed DOI PMC

Brechbühl J., Lopes A.C., Wood D., Bouteiller S., de Valliere A., Verdumo C., Broillet M.C. Age-dependent appearance of SARS-CoV-2 entry sites in mouse chemosensory systems reflects COVID-19 anosmia-ageusia symptoms. Commun. Biol. 2021;4:880. doi: 10.1038/s42003-021-02410-9. PubMed DOI PMC

Brechbühl J., Ferreira F., Lopes A.C., Corset E., Gilliand N., Broillet M.C. Ocular Symptoms Associated with COVID-19 Are Correlated with the Expression Profile of Mouse SARS-CoV-2 Binding Sites. Viruses. 2023;15:354. doi: 10.3390/v15020354. PubMed DOI PMC

Hummel T., Liu D.T., Muller C.A., Stuck B.A., Welge-Lussen A., Hahner A. Olfactory Dysfunction: Etiology, Diagnosis, and Treatment. Dtsch. Arztebl. Int. 2023;120:146–154. doi: 10.3238/arztebl.m2022.0411. PubMed DOI PMC

Bratman G.N., Bembibre C., Daily G.C., Doty R.L., Hummel T., Jacobs L.F., Kahn P.H., Jr., Lashus C., Majid A., Miller J.D., et al. Nature and human well-being: The olfactory pathway. Sci. Adv. 2024;10:eadn3028. doi: 10.1126/sciadv.adn3028. PubMed DOI PMC

Pierron D., Pereda-Loth V., Mantel M., Moranges M., Bignon E., Alva O., Kabous J., Heiske M., Pacalon J., David R., et al. Smell and taste changes are early indicators of the COVID-19 pandemic and political decision effectiveness. Nat. Commun. 2020;11:5152. doi: 10.1038/s41467-020-18963-y. PubMed DOI PMC

Stuck B.A., Menzel S., Laudien M., Hintschich C.A., Hummel T. COVID-19-induced olfactory loss. J. Allergy Clin. Immunol. 2023;151:895–897. doi: 10.1016/j.jaci.2023.02.007. PubMed DOI PMC

Munoz-Fontela C., Dowling W.E., Funnell S.G.P., Gsell P.S., Riveros-Balta A.X., Albrecht R.A., Andersen H., Baric R.S., Carroll M.W., Cavaleri M., et al. Animal models for COVID-19. Nature. 2020;586:509–515. doi: 10.1038/s41586-020-2787-6. PubMed DOI PMC

Dinnon K.H., 3rd, Leist S.R., Schafer A., Edwards C.E., Martinez D.R., Montgomery S.A., West A., Yount B.L., Jr., Hou Y.J., Adams L.E., et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 2020;586:560–566. doi: 10.1038/s41586-020-2708-8. PubMed DOI PMC

Zazhytska M., Kodra A., Hoagland D.A., Frere J., Fullard J.F., Shayya H., McArthur N.G., Moeller R., Uhl S., Omer A.D., et al. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell. 2022;185:1052–1064 e1012. doi: 10.1016/j.cell.2022.01.024. PubMed DOI PMC

Fodoulian L., Tuberosa J., Rossier D., Boillat M., Kan C., Pauli V., Egervari K., Lobrinus J.A., Landis B.N., Carleton A., et al. SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. iScience. 2020;23:101839. doi: 10.1016/j.isci.2020.101839. PubMed DOI PMC

Hernandez A.K., Landis B.N., Altundag A., Fjaeldstad A.W., Gane S., Holbrook E.H., Huart C., Konstantinidis I., Lechner M., Macchi A., et al. Olfactory Nomenclature: An Orchestrated Effort to Clarify Terms and Definitions of Dysosmia, Anosmia, Hyposmia, Normosmia, Hyperosmia, Olfactory Intolerance, Parosmia, and Phantosmia/Olfactory Hallucination. ORL J. Otorhinolaryngol. Relat. Spec. 2023;85:312–320. doi: 10.1159/000530211. PubMed DOI PMC

Nag A.K., Saltagi A.K., Saltagi M.Z., Wu A.W., Higgins T.S., Knisely A., Ting J.Y., Illing E.A. Management of Post-Infectious Anosmia and Hyposmia: A Systematic Review. Ann. Otol. Rhinol. Laryngol. 2023;132:806–817. doi: 10.1177/00034894221118186. PubMed DOI

Lanza D.C., Deems D.A., Doty R.L., Moran D., Crawford D., Rowley J.C., 3rd, Sajjadian A., Kennedy D.W. The effect of human olfactory biopsy on olfaction: A preliminary report. Laryngoscope. 1994;104:837–840. doi: 10.1288/00005537-199407000-00010. PubMed DOI

Jafek B.W., Murrow B., Michaels R., Restrepo D., Linschoten M. Biopsies of human olfactory epithelium. Chem. Senses. 2002;27:623–628. doi: 10.1093/chemse/27.7.623. PubMed DOI

Brechbühl J., Moine F., Tosato M.N., Sporkert F., Broillet M.C. Identification of pyridine analogs as new predator-derived kairomones. Front. Neurosci. 2015;9:253. doi: 10.3389/fnins.2015.00253. PubMed DOI PMC

Boschat C., Pelofi C., Randin O., Roppolo D., Luscher C., Broillet M.C., Rodriguez I. Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 2002;5:1261–1262. doi: 10.1038/nn978. PubMed DOI

Liberles S.D., Horowitz L.F., Kuang D., Contos J.J., Wilson K.L., Siltberg-Liberles J., Liberles D.A., Buck L.B. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc. Natl. Acad. Sci. USA. 2009;106:9842–9847. doi: 10.1073/pnas.0904464106. PubMed DOI PMC

Riviere S., Challet L., Fluegge D., Spehr M., Rodriguez I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 2009;459:574–577. doi: 10.1038/nature08029. PubMed DOI

Leinders-Zufall T., Cockerham R.E., Michalakis S., Biel M., Garbers D.L., Reed R.R., Zufall F., Munger S.D. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl. Acad. Sci. USA. 2007;104:14507–14512. doi: 10.1073/pnas.0704965104. PubMed DOI PMC

Grosmaitre X., Vassalli A., Mombaerts P., Shepherd G.M., Ma M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: A patch clamp analysis in gene-targeted mice. Proc. Natl. Acad. Sci. USA. 2006;103:1970–1975. doi: 10.1073/pnas.0508491103. PubMed DOI PMC

Zhang J., Pacifico R., Cawley D., Feinstein P., Bozza T. Ultrasensitive detection of amines by a trace amine-associated receptor. J. Neurosci. 2013;33:3228–3239. doi: 10.1523/JNEUROSCI.4299-12.2013. PubMed DOI PMC

Hubrecht R.C., Carter E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals. 2019;9:754. doi: 10.3390/ani9100754. PubMed DOI PMC

Debiec J., Sullivan R.M. Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proc. Natl. Acad. Sci. USA. 2014;111:12222–12227. doi: 10.1073/pnas.1316740111. PubMed DOI PMC

Kuhara A., Okumura M., Kimata T., Tanizawa Y., Takano R., Kimura K.D., Inada H., Matsumoto K., Mori I. Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science. 2008;320:803–807. doi: 10.1126/science.1148922. PubMed DOI

Biron D., Wasserman S., Thomas J.H., Samuel A.D., Sengupta P. An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proc. Natl. Acad. Sci. USA. 2008;105:11002–11007. doi: 10.1073/pnas.0805004105. PubMed DOI PMC

Zeiner R., Tichy H. Integration of temperature and olfactory information in cockroach antennal lobe glomeruli. J. Comp. Physiol. A. 2000;186:717–727. doi: 10.1007/s003590000125. PubMed DOI

Riveron J., Boto T., Alcorta E. The effect of environmental temperature on olfactory perception in Drosophila melanogaster. J. Insect Physiol. 2009;55:943–951. doi: 10.1016/j.jinsphys.2009.06.009. PubMed DOI

Kludt E., Okom C., Brinkmann A., Schild D. Integrating temperature with odor processing in the olfactory bulb. J. Neurosci. 2015;35:7892–7902. doi: 10.1523/JNEUROSCI.0571-15.2015. PubMed DOI PMC

Aragona M., Mhalhel K., Cometa M., Franco G.A., Montalbano G., Guerrera M.C., Levanti M., Laura R., Abbate F., Vega J.A., et al. Piezo 1 and Piezo 2 in the Chemosensory Organs of Zebrafish (Danio rerio) Int. J. Mol. Sci. 2024;25:7404. doi: 10.3390/ijms25137404. PubMed DOI PMC

Jammal Salameh L., Bitzenhofer S.H., Hanganu-Opatz I.L., Dutschmann M., Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science. 2024;383:eadk8511. doi: 10.1126/science.adk8511. PubMed DOI

Grosmaitre X., Santarelli L.C., Tan J., Luo M., Ma M. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat. Neurosci. 2007;10:348–354. doi: 10.1038/nn1856. PubMed DOI PMC

Munger S.D., Leinders-Zufall T., McDougall L.M., Cockerham R.E., Schmid A., Wandernoth P., Wennemuth G., Biel M., Zufall F., Kelliher K.R. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr. Biol. 2010;20:1438–1444. doi: 10.1016/j.cub.2010.06.021. PubMed DOI PMC

Scott K. Out of Thin Air: Sensory Detection of Oxygen and Carbon Dioxide. Neuron. 2011;69:194–202. doi: 10.1016/j.neuron.2010.12.018. PubMed DOI PMC

Hu J., Zhong C., Ding C., Chi Q., Walz A., Mombaerts P., Matsunami H., Luo M. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science. 2007;317:953–957. doi: 10.1126/science.1144233. PubMed DOI

Koike K., Yoo S.J., Bleymehl K., Omura M., Zapiec B., Pyrski M., Blum T., Khan M., Bai Z.D., Leinders-Zufall T., et al. Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron. 2021;109:2469–2484. doi: 10.1016/j.neuron.2021.05.032. PubMed DOI

Peters A., Nawrot T.S., Baccarelli A.A. Hallmarks of environmental insults. Cell. 2021;184:1455–1468. doi: 10.1016/j.cell.2021.01.043. PubMed DOI PMC

Tsukahara T., Brann D.H., Pashkovski S.L., Guitchounts G., Bozza T., Datta S.R. A transcriptional rheostat couples past activity to future sensory responses. Cell. 2021;184:6326–6343.e6332. doi: 10.1016/j.cell.2021.11.022. PubMed DOI PMC

Cree I.A., Deans Z., Ligtenberg M.J., Normanno N., Edsjo A., Rouleau E., Sole F., Thunnissen E., Timens W., Schuuring E., et al. Guidance for laboratories performing molecular pathology for cancer patients. J. Clin. Pathol. 2014;67:923–931. doi: 10.1136/jclinpath-2014-202404. PubMed DOI PMC

Riegman P.H. Tissue Preservation and Factors Affecting Tissue Quality. In: Hainaut P., Vaught J., Zatloukal K., Pasterk M., editors. Biobanking of Human Biospecimens. Sringer; Berlin/Heidelberg, Germany: 2021. pp. 65–80.

Calvo-Ochoa E., Byrd-Jacobs C.A. The Olfactory System of Zebrafish as a Model for the Study of Neurotoxicity and Injury: Implications for Neuroplasticity and Disease. Int. J. Mol. Sci. 2019;20:1639. doi: 10.3390/ijms20071639. PubMed DOI PMC

Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 2019;15:11–24. doi: 10.1038/s41582-018-0097-5. PubMed DOI

Ubeda-Banon I., Saiz-Sanchez D., Flores-Cuadrado A., Rioja-Corroto E., Gonzalez-Rodriguez M., Villar-Conde S., Astillero-Lopez V., Cabello-de la Rosa J.P., Gallardo-Alcaniz M.J., Vaamonde-Gamo J., et al. The human olfactory system in two proteinopathies: Alzheimer’s and Parkinson’s diseases. Transl. Neurodegener. 2020;9:22. doi: 10.1186/s40035-020-00200-7. PubMed DOI PMC

Hummel T., Podlesek D. Clinical assessment of olfactory function. Chem. Senses. 2021;46:bjab053. doi: 10.1093/chemse/bjab053. PubMed DOI

Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280 e278. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Sia S.F., Yan L.M., Chin A.W.H., Fung K., Choy K.T., Wong A.Y.L., Kaewpreedee P., Perera R., Poon L.L.M., Nicholls J.M., et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583:834–838. doi: 10.1038/s41586-020-2342-5. PubMed DOI PMC

Brann D.H., Tsukahara T., Weinreb C., Lipovsek M., Van den Berge K., Gong B., Chance R., Macaulay I.C., Chou H.J., Fletcher R.B., et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020;6:eabc5801. doi: 10.1126/sciadv.abc5801. PubMed DOI PMC

Al-Saigh N.N., Harb A.A., Abdalla S. Receptors Involved in COVID-19-Related Anosmia: An Update on the Pathophysiology and the Mechanistic Aspects. Int. J. Mol. Sci. 2024;25:8527. doi: 10.3390/ijms25158527. PubMed DOI PMC

McGann J.P. Poor human olfaction is a 19th-century myth. Science. 2017;356:eaam7263. doi: 10.1126/science.aam7263. PubMed DOI PMC

Mombaerts P., Wang F., Dulac C., Chao S.K., Nemes A., Mendelsohn M., Edmondson J., Axel R. Visualizing an olfactory sensory map. Cell. 1996;87:675–686. doi: 10.1016/S0092-8674(00)81387-2. PubMed DOI

Margolis F.L. A brain protein unique to the olfactory bulb. Proc. Natl. Acad. Sci. USA. 1972;69:1221–1224. doi: 10.1073/pnas.69.5.1221. PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...