Development of an rpS6-Based Ex Vivo Assay for the Analysis of Neuronal Activity in Mouse and Human Olfactory Systems
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
310030_185161
Swiss National Science Foundation - Switzerland
PubMed
39684883
PubMed Central
PMC11642283
DOI
10.3390/ijms252313173
PII: ijms252313173
Knihovny.cz E-resources
- Keywords
- 3Rs, Grueneberg ganglion, environmental factors, human, mouse, neuronal activity, olfaction, olfactory subsystems, rpS6,
- MeSH
- Smell physiology MeSH
- Olfactory Mucosa metabolism MeSH
- Olfactory Receptor Neurons * metabolism physiology MeSH
- Phosphorylation MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Odorants analysis MeSH
- Ribosomal Protein S6 * metabolism MeSH
- Vomeronasal Organ metabolism physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ribosomal Protein S6 * MeSH
Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion. This approach enabled us to observe odorant-induced neuronal activity within the different olfactory subsystems and to demonstrate the impact of environmental conditioning, such as temperature variations, on olfactory sensitivity, specifically in the Grueneberg ganglion. We further applied our rpS6-based assay to the human olfactory system and demonstrated its feasibility. Our findings show that analyzing rpS6 signal intensity is a robust and highly reproducible indicator of neuronal activity across various olfactory systems, while avoiding stress and some experimental limitations associated with in vivo exposure. The potential extension of this assay to other conditioning paradigms and olfactory systems, as well as its application to other animal species, including human olfactory diagnostics, is also discussed.
Faculty of Biology and Medicine University of Lausanne Bugnon 9 CH 1005 Lausanne Switzerland
Faculty of Medicine Hradec Králové Charles University 500 00 Hradec Králové Czech Republic
See more in PubMed
Firestein S. How the olfactory system makes sense of scents. Nature. 2001;413:211–218. doi: 10.1038/35093026. PubMed DOI
Munger S.D., Leinders-Zufall T., Zufall F. Subsystem organization of the mammalian sense of smell. Annu. Rev. Physiol. 2009;71:115–140. doi: 10.1146/annurev.physiol.70.113006.100608. PubMed DOI
Brechbühl J., de Valliere A., Wood D., Nenniger Tosato M., Broillet M.C. The Grueneberg ganglion controls odor-driven food choices in mice under threat. Commun. Biol. 2020;3:533. doi: 10.1038/s42003-020-01257-w. PubMed DOI PMC
Ma M. Odor and pheromone sensing via chemoreceptors. Adv. Exp. Med. Biol. 2012;739:93–106. doi: 10.1007/978-1-4614-1704-0_6. PubMed DOI
Touhara K., Vosshall L.B. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 2009;71:307–332. doi: 10.1146/annurev.physiol.010908.163209. PubMed DOI
Brennan P.A. The vomeronasal system. Cell Mol. Life Sci. 2001;58:546–555. doi: 10.1007/PL00000880. PubMed DOI PMC
Mombaerts P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 2004;5:263–278. doi: 10.1038/nrn1365. PubMed DOI
Logan D.W., Brunet L.J., Webb W.R., Cutforth T., Ngai J., Stowers L. Learned recognition of maternal signature odors mediates the first suckling episode in mice. Curr. Biol. 2012;22:1998–2007. doi: 10.1016/j.cub.2012.08.041. PubMed DOI PMC
Brechbühl J., Klaey M., Broillet M.C. Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science. 2008;321:1092–1095. doi: 10.1126/science.1160770. PubMed DOI
Brechbühl J., Moine F., Klaey M., Nenniger-Tosato M., Hurni N., Sporkert F., Giroud C., Broillet M.C. Mouse alarm pheromone shares structural similarity with predator scents. Proc. Natl. Acad. Sci. USA. 2013;110:4762–4767. doi: 10.1073/pnas.1214249110. PubMed DOI PMC
Chao Y.C., Fleischer J., Yang R.B. Guanylyl cyclase-G is an alarm pheromone receptor in mice. EMBO J. 2018;37:39–49. doi: 10.15252/embj.201797155. PubMed DOI PMC
Mamasuew K., Hofmann N., Kretzschmann V., Biel M., Yang R.B., Breer H., Fleischer J. Chemo- and thermosensory responsiveness of Grueneberg ganglion neurons relies on cyclic guanosine monophosphate signaling elements. Neurosignals. 2011;19:198–209. doi: 10.1159/000329333. PubMed DOI
Brechbühl J., Moine F., Broillet M.C. Mouse Grueneberg ganglion neurons share molecular and functional features with C. elegans amphid neurons. Front. Behav. Neurosci. 2013;7:193. doi: 10.3389/fnbeh.2013.00193. PubMed DOI PMC
Schmid A., Pyrski M., Biel M., Leinders-Zufall T., Zufall F. Grueneberg ganglion neurons are finely tuned cold sensors. J. Neurosci. 2010;30:7563–7568. doi: 10.1523/JNEUROSCI.0608-10.2010. PubMed DOI PMC
Lessmann M.E., Guducu C., Ibarlucea B., Hummel T. Electrophysiological Recordings from the Olfactory Epithelium and Human Brain in Response to Stimulation with HLA Related Peptides. Neuroscience. 2021;473:44–51. doi: 10.1016/j.neuroscience.2021.08.005. PubMed DOI
Hernandez-Clavijo A., Sanchez Trivino C.A., Guarneri G., Ricci C., Mantilla-Esparza F.A., Gonzalez-Velandia K.Y., Boscolo-Rizzo P., Tofanelli M., Bonini P., Dibattista M., et al. Shedding light on human olfaction: Electrophysiological recordings from sensory neurons in acute slices of olfactory epithelium. iScience. 2023;26:107186. doi: 10.1016/j.isci.2023.107186. PubMed DOI PMC
Lin A., Qin S., Casademunt H., Wu M., Hung W., Cain G., Tan N.Z., Valenzuela R., Lesanpezeshki L., Venkatachalam V., et al. Functional imaging and quantification of multineuronal olfactory responses in C. elegans. Sci. Adv. 2023;9:eade1249. doi: 10.1126/sciadv.ade1249. PubMed DOI PMC
Brechbühl J., Klaey M., Moine F., Bovay E., Hurni N., Nenniger Tosato M., Broillet M.-C. Morphological and physiological species-dependent characteristics of the rodent Grueneberg ganglion. Front. Neuroanat. 2014;8:87. doi: 10.3389/fnana.2014.00087. PubMed DOI PMC
Liu C.Y., Xiao C., Fraser S.E., Lester H.A., Koos D.S. Electrophysiological characterization of Grueneberg ganglion olfactory neurons: Spontaneous firing, sodium conductance, and hyperpolarization-activated currents. J. Neurophysiol. 2012;108:1318–1334. doi: 10.1152/jn.00907.2011. PubMed DOI PMC
Hanke W., Mamasuew K., Biel M., Yang R.B., Fleischer J. Odorant-evoked electrical responses in Grueneberg ganglion neurons rely on cGMP-associated signaling proteins. Neurosci. Lett. 2013;539:38–42. doi: 10.1016/j.neulet.2013.01.032. PubMed DOI
Haga S., Kimoto H., Touhara K. Molecular characterization of vomeronasal sensory neurons responding to a male-specific peptide in tear fluid: Sexual communication in mice. Pure Appl. Chem. 2007;79:775–783. doi: 10.1351/pac200779040775. DOI
Aparicio S.Y.L., Fierro A.D.L., Abreu G.E.A., Cárdenas R., Hernández L.I.T.G., Avila G.A.C., Durán F., Aguilar M.E.H., Denes J.M., Chi-Castañeda L.D., et al. Current Opinion on the Use of c-Fos in Neuroscience. Neurosci. 2022;3:687–702. doi: 10.3390/neurosci3040050. PubMed DOI PMC
Bepari A.K., Watanabe K., Yamaguchi M., Tamamaki N., Takebayashi H. Visualization of odor-induced neuronal activity by immediate early gene expression. BMC Neurosci. 2012;13:140. doi: 10.1186/1471-2202-13-140. PubMed DOI PMC
Mamasuew K., Hofmann N., Breer H., Fleischer J. Grueneberg ganglion neurons are activated by a defined set of odorants. Chem. Senses. 2011;36:271–282. doi: 10.1093/chemse/bjq124. PubMed DOI
Isogai Y., Si S., Pont-Lezica L., Tan T., Kapoor V., Murthy V.N., Dulac C. Molecular organization of vomeronasal chemoreception. Nature. 2011;478:241–245. doi: 10.1038/nature10437. PubMed DOI PMC
Norlin E.M., Vedin V., Bohm S., Berghard A. Odorant-dependent, spatially restricted induction of c-fos in the olfactory epithelium of the mouse. J. Neurochem. 2005;93:1594–1602. doi: 10.1111/j.1471-4159.2005.03159.x. PubMed DOI
Lopes A.C., Brechbuhl J., Ferreira F., Amez-Droz M., Broillet M.C. From In Vitro Data to In Vivo Interspecies Danger Communication: A Study of Chemosensing via the Mouse Grueneberg Ganglion. Animals. 2022;12:356. doi: 10.3390/ani12030356. PubMed DOI PMC
Knight Z.A., Tan K., Birsoy K., Schmidt S., Garrison J.L., Wysocki R.W., Emiliano A., Ekstrand M.I., Friedman J.M. Molecular Profiling of Activated Neurons by Phosphorylated Ribosome Capture. Cell. 2012;151:1126–1137. doi: 10.1016/j.cell.2012.10.039. PubMed DOI PMC
de Valliere A., Lopes A.C., Addorisio A., Gilliand N., Nenniger Tosato M., Wood D., Brechbühl J., Broillet M.C. Food preference acquired by social transmission is altered by the absence of the olfactory marker protein in mice. Front. Nutr. 2022;9:1026373. doi: 10.3389/fnut.2022.1026373. PubMed DOI PMC
von der Weid B., Rossier D., Lindup M., Tuberosa J., Widmer A., Col J.D., Kan C., Carleton A., Rodriguez I. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat. Neurosci. 2015;18:1455–1463. doi: 10.1038/nn.4100. PubMed DOI
Mamasuew K., Breer H., Fleischer J. Grueneberg ganglion neurons respond to cool ambient temperatures. Eur. J. Neurosci. 2008;28:1775–1785. doi: 10.1111/j.1460-9568.2008.06465.x. PubMed DOI
Valvano J.W. Optical Thermal Response of Laser-Irradiated Tissue. 2nd ed. Springer; Boston, MA, USA: 2011. Tissue Thermal Properties and Perfusion; pp. 455–485. DOI
Huang Z.B., Tatti R., Loeven A.M., Conde D.R.L., Fadool D.A. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front. Cell. Neurosci. 2021;15:662184. doi: 10.3389/fncel.2021.662184. PubMed DOI PMC
Potter S.M., Zheng C., Koos D.S., Feinstein P., Fraser S.E., Mombaerts P. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 2001;21:9713–9723. doi: 10.1523/JNEUROSCI.21-24-09713.2001. PubMed DOI PMC
Nakashima N., Nakashima K., Taura A., Takaku-Nakashima A., Ohmori H., Takano M. Olfactory marker protein directly buffers cAMP to avoid depolarization-induced silencing of olfactory receptor neurons. Nat. Commun. 2020;11:2188. doi: 10.1038/s41467-020-15917-2. PubMed DOI PMC
Matsuo T., Hattori T., Asaba A., Inoue N., Kanomata N., Kikusui T., Kobayakawa R., Kobayakawa K. Genetic dissection of pheromone processing reveals main olfactory system-mediated social behaviors in mice. Proc. Natl. Acad. Sci. USA. 2015;112:E311–E320. doi: 10.1073/pnas.1416723112. PubMed DOI PMC
Kobayakawa K., Kobayakawa R., Matsumoto H., Oka Y., Imai T., Ikawa M., Okabe M., Ikeda T., Itohara S., Kikusui T., et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature. 2007;450:503–508. doi: 10.1038/nature06281. PubMed DOI
Leinders-Zufall T., Lane A.P., Puche A.C., Ma W., Novotny M.V., Shipley M.T., Zufall F. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 2000;405:792–796. doi: 10.1038/35015572. PubMed DOI
Bumbalo R., Lieber M., Lehmann E., Wolf I., Breer H., Fleischer J. Attenuated Chemosensory Responsiveness of the Grueneberg Ganglion in Mouse Pups at Warm Temperatures. Neuroscience. 2017;366:149–161. doi: 10.1016/j.neuroscience.2017.10.012. PubMed DOI
Matsuki M., Yamashita F., Ishida-Yamamoto A., Yamada K., Kinoshita C., Fushiki S., Ueda E., Morishima Y., Tabata K., Yasuno H., et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase) Proc. Natl. Acad. Sci. USA. 1998;95:1044–1049. doi: 10.1073/pnas.95.3.1044. PubMed DOI PMC
Brechbühl J., Luyet G., Moine F., Rodriguez I., Broillet M.C. Imaging pheromone sensing in a mouse vomeronasal acute tissue slice preparation. J. Vis. Exp. 2011;58:3311. doi: 10.3791/3311-v. PubMed DOI PMC
Fitzek M., Patel P.K., Solomon P.D., Lin B., Hummel T., Schwob J.E., Holbrook E.H. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. J. Comp. Neurol. 2022;530:2154–2175. doi: 10.1002/cne.25325. PubMed DOI PMC
Perez-Gomez A., Bleymehl K., Stein B., Pyrski M., Birnbaumer L., Munger S.D., Leinders-Zufall T., Zufall F., Chamero P. Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus. Curr. Biol. 2015;25:1340–1346. doi: 10.1016/j.cub.2015.03.026. PubMed DOI PMC
Ring N.A.R., Dworak H., Bachmann B., Schadl B., Valdivieso K., Rozmaric T., Heimel P., Fischer I., Klinaki E., Gutasi A., et al. The p-rpS6-zone delineates wounding responses and the healing process. Dev. Cell. 2023;58:981–992.e986. doi: 10.1016/j.devcel.2023.04.001. PubMed DOI
Khan M., Yoo S.J., Clijsters M., Backaert W., Vanstapel A., Speleman K., Lietaer C., Choi S., Hether T.D., Marcelis L., et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184:5932–5949.e5915. doi: 10.1016/j.cell.2021.10.027. PubMed DOI PMC
Brechbühl J., Lopes A.C., Wood D., Bouteiller S., de Valliere A., Verdumo C., Broillet M.C. Age-dependent appearance of SARS-CoV-2 entry sites in mouse chemosensory systems reflects COVID-19 anosmia-ageusia symptoms. Commun. Biol. 2021;4:880. doi: 10.1038/s42003-021-02410-9. PubMed DOI PMC
Brechbühl J., Ferreira F., Lopes A.C., Corset E., Gilliand N., Broillet M.C. Ocular Symptoms Associated with COVID-19 Are Correlated with the Expression Profile of Mouse SARS-CoV-2 Binding Sites. Viruses. 2023;15:354. doi: 10.3390/v15020354. PubMed DOI PMC
Hummel T., Liu D.T., Muller C.A., Stuck B.A., Welge-Lussen A., Hahner A. Olfactory Dysfunction: Etiology, Diagnosis, and Treatment. Dtsch. Arztebl. Int. 2023;120:146–154. doi: 10.3238/arztebl.m2022.0411. PubMed DOI PMC
Bratman G.N., Bembibre C., Daily G.C., Doty R.L., Hummel T., Jacobs L.F., Kahn P.H., Jr., Lashus C., Majid A., Miller J.D., et al. Nature and human well-being: The olfactory pathway. Sci. Adv. 2024;10:eadn3028. doi: 10.1126/sciadv.adn3028. PubMed DOI PMC
Pierron D., Pereda-Loth V., Mantel M., Moranges M., Bignon E., Alva O., Kabous J., Heiske M., Pacalon J., David R., et al. Smell and taste changes are early indicators of the COVID-19 pandemic and political decision effectiveness. Nat. Commun. 2020;11:5152. doi: 10.1038/s41467-020-18963-y. PubMed DOI PMC
Stuck B.A., Menzel S., Laudien M., Hintschich C.A., Hummel T. COVID-19-induced olfactory loss. J. Allergy Clin. Immunol. 2023;151:895–897. doi: 10.1016/j.jaci.2023.02.007. PubMed DOI PMC
Munoz-Fontela C., Dowling W.E., Funnell S.G.P., Gsell P.S., Riveros-Balta A.X., Albrecht R.A., Andersen H., Baric R.S., Carroll M.W., Cavaleri M., et al. Animal models for COVID-19. Nature. 2020;586:509–515. doi: 10.1038/s41586-020-2787-6. PubMed DOI PMC
Dinnon K.H., 3rd, Leist S.R., Schafer A., Edwards C.E., Martinez D.R., Montgomery S.A., West A., Yount B.L., Jr., Hou Y.J., Adams L.E., et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature. 2020;586:560–566. doi: 10.1038/s41586-020-2708-8. PubMed DOI PMC
Zazhytska M., Kodra A., Hoagland D.A., Frere J., Fullard J.F., Shayya H., McArthur N.G., Moeller R., Uhl S., Omer A.D., et al. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell. 2022;185:1052–1064 e1012. doi: 10.1016/j.cell.2022.01.024. PubMed DOI PMC
Fodoulian L., Tuberosa J., Rossier D., Boillat M., Kan C., Pauli V., Egervari K., Lobrinus J.A., Landis B.N., Carleton A., et al. SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. iScience. 2020;23:101839. doi: 10.1016/j.isci.2020.101839. PubMed DOI PMC
Hernandez A.K., Landis B.N., Altundag A., Fjaeldstad A.W., Gane S., Holbrook E.H., Huart C., Konstantinidis I., Lechner M., Macchi A., et al. Olfactory Nomenclature: An Orchestrated Effort to Clarify Terms and Definitions of Dysosmia, Anosmia, Hyposmia, Normosmia, Hyperosmia, Olfactory Intolerance, Parosmia, and Phantosmia/Olfactory Hallucination. ORL J. Otorhinolaryngol. Relat. Spec. 2023;85:312–320. doi: 10.1159/000530211. PubMed DOI PMC
Nag A.K., Saltagi A.K., Saltagi M.Z., Wu A.W., Higgins T.S., Knisely A., Ting J.Y., Illing E.A. Management of Post-Infectious Anosmia and Hyposmia: A Systematic Review. Ann. Otol. Rhinol. Laryngol. 2023;132:806–817. doi: 10.1177/00034894221118186. PubMed DOI
Lanza D.C., Deems D.A., Doty R.L., Moran D., Crawford D., Rowley J.C., 3rd, Sajjadian A., Kennedy D.W. The effect of human olfactory biopsy on olfaction: A preliminary report. Laryngoscope. 1994;104:837–840. doi: 10.1288/00005537-199407000-00010. PubMed DOI
Jafek B.W., Murrow B., Michaels R., Restrepo D., Linschoten M. Biopsies of human olfactory epithelium. Chem. Senses. 2002;27:623–628. doi: 10.1093/chemse/27.7.623. PubMed DOI
Brechbühl J., Moine F., Tosato M.N., Sporkert F., Broillet M.C. Identification of pyridine analogs as new predator-derived kairomones. Front. Neurosci. 2015;9:253. doi: 10.3389/fnins.2015.00253. PubMed DOI PMC
Boschat C., Pelofi C., Randin O., Roppolo D., Luscher C., Broillet M.C., Rodriguez I. Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 2002;5:1261–1262. doi: 10.1038/nn978. PubMed DOI
Liberles S.D., Horowitz L.F., Kuang D., Contos J.J., Wilson K.L., Siltberg-Liberles J., Liberles D.A., Buck L.B. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc. Natl. Acad. Sci. USA. 2009;106:9842–9847. doi: 10.1073/pnas.0904464106. PubMed DOI PMC
Riviere S., Challet L., Fluegge D., Spehr M., Rodriguez I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 2009;459:574–577. doi: 10.1038/nature08029. PubMed DOI
Leinders-Zufall T., Cockerham R.E., Michalakis S., Biel M., Garbers D.L., Reed R.R., Zufall F., Munger S.D. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl. Acad. Sci. USA. 2007;104:14507–14512. doi: 10.1073/pnas.0704965104. PubMed DOI PMC
Grosmaitre X., Vassalli A., Mombaerts P., Shepherd G.M., Ma M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: A patch clamp analysis in gene-targeted mice. Proc. Natl. Acad. Sci. USA. 2006;103:1970–1975. doi: 10.1073/pnas.0508491103. PubMed DOI PMC
Zhang J., Pacifico R., Cawley D., Feinstein P., Bozza T. Ultrasensitive detection of amines by a trace amine-associated receptor. J. Neurosci. 2013;33:3228–3239. doi: 10.1523/JNEUROSCI.4299-12.2013. PubMed DOI PMC
Hubrecht R.C., Carter E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals. 2019;9:754. doi: 10.3390/ani9100754. PubMed DOI PMC
Debiec J., Sullivan R.M. Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proc. Natl. Acad. Sci. USA. 2014;111:12222–12227. doi: 10.1073/pnas.1316740111. PubMed DOI PMC
Kuhara A., Okumura M., Kimata T., Tanizawa Y., Takano R., Kimura K.D., Inada H., Matsumoto K., Mori I. Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science. 2008;320:803–807. doi: 10.1126/science.1148922. PubMed DOI
Biron D., Wasserman S., Thomas J.H., Samuel A.D., Sengupta P. An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proc. Natl. Acad. Sci. USA. 2008;105:11002–11007. doi: 10.1073/pnas.0805004105. PubMed DOI PMC
Zeiner R., Tichy H. Integration of temperature and olfactory information in cockroach antennal lobe glomeruli. J. Comp. Physiol. A. 2000;186:717–727. doi: 10.1007/s003590000125. PubMed DOI
Riveron J., Boto T., Alcorta E. The effect of environmental temperature on olfactory perception in Drosophila melanogaster. J. Insect Physiol. 2009;55:943–951. doi: 10.1016/j.jinsphys.2009.06.009. PubMed DOI
Kludt E., Okom C., Brinkmann A., Schild D. Integrating temperature with odor processing in the olfactory bulb. J. Neurosci. 2015;35:7892–7902. doi: 10.1523/JNEUROSCI.0571-15.2015. PubMed DOI PMC
Aragona M., Mhalhel K., Cometa M., Franco G.A., Montalbano G., Guerrera M.C., Levanti M., Laura R., Abbate F., Vega J.A., et al. Piezo 1 and Piezo 2 in the Chemosensory Organs of Zebrafish (Danio rerio) Int. J. Mol. Sci. 2024;25:7404. doi: 10.3390/ijms25137404. PubMed DOI PMC
Jammal Salameh L., Bitzenhofer S.H., Hanganu-Opatz I.L., Dutschmann M., Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science. 2024;383:eadk8511. doi: 10.1126/science.adk8511. PubMed DOI
Grosmaitre X., Santarelli L.C., Tan J., Luo M., Ma M. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat. Neurosci. 2007;10:348–354. doi: 10.1038/nn1856. PubMed DOI PMC
Munger S.D., Leinders-Zufall T., McDougall L.M., Cockerham R.E., Schmid A., Wandernoth P., Wennemuth G., Biel M., Zufall F., Kelliher K.R. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr. Biol. 2010;20:1438–1444. doi: 10.1016/j.cub.2010.06.021. PubMed DOI PMC
Scott K. Out of Thin Air: Sensory Detection of Oxygen and Carbon Dioxide. Neuron. 2011;69:194–202. doi: 10.1016/j.neuron.2010.12.018. PubMed DOI PMC
Hu J., Zhong C., Ding C., Chi Q., Walz A., Mombaerts P., Matsunami H., Luo M. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science. 2007;317:953–957. doi: 10.1126/science.1144233. PubMed DOI
Koike K., Yoo S.J., Bleymehl K., Omura M., Zapiec B., Pyrski M., Blum T., Khan M., Bai Z.D., Leinders-Zufall T., et al. Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron. 2021;109:2469–2484. doi: 10.1016/j.neuron.2021.05.032. PubMed DOI
Peters A., Nawrot T.S., Baccarelli A.A. Hallmarks of environmental insults. Cell. 2021;184:1455–1468. doi: 10.1016/j.cell.2021.01.043. PubMed DOI PMC
Tsukahara T., Brann D.H., Pashkovski S.L., Guitchounts G., Bozza T., Datta S.R. A transcriptional rheostat couples past activity to future sensory responses. Cell. 2021;184:6326–6343.e6332. doi: 10.1016/j.cell.2021.11.022. PubMed DOI PMC
Cree I.A., Deans Z., Ligtenberg M.J., Normanno N., Edsjo A., Rouleau E., Sole F., Thunnissen E., Timens W., Schuuring E., et al. Guidance for laboratories performing molecular pathology for cancer patients. J. Clin. Pathol. 2014;67:923–931. doi: 10.1136/jclinpath-2014-202404. PubMed DOI PMC
Riegman P.H. Tissue Preservation and Factors Affecting Tissue Quality. In: Hainaut P., Vaught J., Zatloukal K., Pasterk M., editors. Biobanking of Human Biospecimens. Sringer; Berlin/Heidelberg, Germany: 2021. pp. 65–80.
Calvo-Ochoa E., Byrd-Jacobs C.A. The Olfactory System of Zebrafish as a Model for the Study of Neurotoxicity and Injury: Implications for Neuroplasticity and Disease. Int. J. Mol. Sci. 2019;20:1639. doi: 10.3390/ijms20071639. PubMed DOI PMC
Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 2019;15:11–24. doi: 10.1038/s41582-018-0097-5. PubMed DOI
Ubeda-Banon I., Saiz-Sanchez D., Flores-Cuadrado A., Rioja-Corroto E., Gonzalez-Rodriguez M., Villar-Conde S., Astillero-Lopez V., Cabello-de la Rosa J.P., Gallardo-Alcaniz M.J., Vaamonde-Gamo J., et al. The human olfactory system in two proteinopathies: Alzheimer’s and Parkinson’s diseases. Transl. Neurodegener. 2020;9:22. doi: 10.1186/s40035-020-00200-7. PubMed DOI PMC
Hummel T., Podlesek D. Clinical assessment of olfactory function. Chem. Senses. 2021;46:bjab053. doi: 10.1093/chemse/bjab053. PubMed DOI
Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280 e278. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC
Sia S.F., Yan L.M., Chin A.W.H., Fung K., Choy K.T., Wong A.Y.L., Kaewpreedee P., Perera R., Poon L.L.M., Nicholls J.M., et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583:834–838. doi: 10.1038/s41586-020-2342-5. PubMed DOI PMC
Brann D.H., Tsukahara T., Weinreb C., Lipovsek M., Van den Berge K., Gong B., Chance R., Macaulay I.C., Chou H.J., Fletcher R.B., et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020;6:eabc5801. doi: 10.1126/sciadv.abc5801. PubMed DOI PMC
Al-Saigh N.N., Harb A.A., Abdalla S. Receptors Involved in COVID-19-Related Anosmia: An Update on the Pathophysiology and the Mechanistic Aspects. Int. J. Mol. Sci. 2024;25:8527. doi: 10.3390/ijms25158527. PubMed DOI PMC
McGann J.P. Poor human olfaction is a 19th-century myth. Science. 2017;356:eaam7263. doi: 10.1126/science.aam7263. PubMed DOI PMC
Mombaerts P., Wang F., Dulac C., Chao S.K., Nemes A., Mendelsohn M., Edmondson J., Axel R. Visualizing an olfactory sensory map. Cell. 1996;87:675–686. doi: 10.1016/S0092-8674(00)81387-2. PubMed DOI
Margolis F.L. A brain protein unique to the olfactory bulb. Proc. Natl. Acad. Sci. USA. 1972;69:1221–1224. doi: 10.1073/pnas.69.5.1221. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC